Contra μ-β-Generalized α-Continuous Mappings in Generalized Topological Spaces

Kowsalya M1, Sentamilselvi M2

1M.Phil Mathematics, 2Assistant Professor of Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal, Tamil Nadu, India

ABSTRACT
In this paper, we have introduced contra μ-β-generalized α-continuous maps and also introduced almost contra μ-β-generalized α-continuous maps in generalized topological spaces by using μ-β-generalized α-closed sets (briefly μ-βGaCS). Also we have introduced some of their basic properties.

Keywords: Generalized topology, generalized topological spaces, μ-α-closed sets, μ-β-generalized α-closed sets, μ-α-continuous, μ-β-generalized α-continuous, contra μ-α-continuous, almost contra μ-β-generalized α-continuous.

1. INTRODUCTION
In 1970, Levin [6] introduced the idea of continuous function. He also introduced the concepts of semi-open sets and semi-continuity [5] in a topological space. Mashhour [7] introduced and studied α-continuous function in topological spaces. The notation of μ-β-generalized α-closed sets (briefly μ-βGaCS) was defined and investigated by Kowsalya, M and Jayanthi. D[4]. Jayanthi, D [2, 3] also introduced contra continuity and almost contra continuity on generalized topological spaces. In this paper, we have introduced contra μ-β-generalized α-continuous maps.

2. PRELIMINARIES
Let us recall the following definitions which are used in sequel.

Definition 2.1: [1] Let X be a nonempty set. A collection μ of subsets of X is a generalized topology (or briefly GT) on X if it satisfies the following:
1. $\emptyset, X \in \mu$ and
2. If $\{M_i : i \in I\} \subseteq \mu$, then $\bigcup_{i \in I} M_i \in \mu$.

If μ is a GT on X, then (X, μ) is called a generalized topological space (or briefly GTS) and the elements of μ are called μ-open sets and their complement are called μ-closed sets.

Definition 2.2: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ-closure of A, denoted by $c_\mu(A)$, is the intersection of all μ-closed sets containing A.

Definition 2.3: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ-interior of A, denoted by $i_\mu(A)$, is the union of all μ-open sets contained in A.

Definition 2.4: [1] Let (X, μ) and (Y, μ_1) be GTSs. Then a mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called
i. μ-semi-closed set if $i_\mu(c_\mu(A)) \subseteq A$
ii. μ-pre-closed set if $c_\mu(i_\mu(A)) \subseteq A$
iii. μ-α-closed set if $c_\mu(i_\mu(c_\mu(A))) \subseteq A$
iv. μ-β-closed set if $i_\mu(c_\mu(i_\mu(A))) \subseteq A$
v. μ-regular-closed set if $A = c_\mu(i_\mu(A))$

Definition 2.5: [7] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called
i. μ-Continuous mapping if $f^{-1}(A)$ is μ-closed in (X, μ_1) for each μ-closed in (Y, μ_2).
ii. μ-Semi-continuous mapping if $f^{-1}(A)$ is μ-semi-closed in (X, μ_1) for every μ-closed in (Y, μ_2).
iii. μ-pre-continuous mapping if $f^{-1}(A)$ is μ-pre-closed in (X, μ_1) for every μ-closed in (Y, μ_2).
iv. μ-α-continuous mapping if $f^{-1}(A)$ is μ-α-closed in (X, μ_1) for every μ-closed in (Y, μ_2).
v. μ-β-continuous mapping if $f^{-1}(A)$ is μ-β-closed in (X, μ_1) for every μ-closed in (Y, μ_2).
Definition 2.6: [9] Let \((X, \mu_1)\) and \((Y, \mu_2)\) be GTSs. Then a mapping \(f: (X, \mu_1) \rightarrow (Y, \mu_2)\) is called

i. contra \(\mu\)-Continuous mapping if \(f^{-1}(A)\) is \(\mu\)-closed in \((X, \mu_1)\) for every \(\mu\)-open in \((Y, \mu_2)\).

ii. contra \(\mu\)-semi continuous mappings if \(f^{-1}(A)\) is \(\mu\)-semi closed in \((X, \mu_1)\) for every \(\mu\)-open in \((Y, \mu_2)\).

iii. contra \(\mu\)-pre-continuous mappings if \(f^{-1}(A)\) is \(\mu\)-pre closed in \((X, \mu_1)\) for every \(\mu\)-regular closed set \(A\) of \((Y, \mu_2)\).

iv. contra \(\mu\)-\(\alpha\)-continuous mapping if \(f(A)\) is \(\mu\)-\(\alpha\)-closed in \((X, \mu_1)\) for every \(\mu\)-open in \((Y, \mu_2)\).

v. contra \(\mu\)-\(\beta\)-continuous mapping if \(f^{-1}(A)\) is \(\mu\)-\(\beta\)-closed in \((X, \mu_1)\) for every \(\mu\)-open in \((Y, \mu_2)\).

Example 3.7: Let \(A = \{c\}\) be a \(\mu\)-open set in \((Y, \mu_2)\). Then \(f^{-1}(\{c\})\) is a \(\mu\)-\(\beta\)-generalized \(\alpha\)-closed set in \((X, \mu_1)\).

Hence \(f\) is a contra \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mapping.

Theorem 3.3: Every contra \(\mu\)-continuous mapping is a contra \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mapping but not conversely in general.

Proof: Let \(f: (X, \mu_1) \rightarrow (Y, \mu_2)\) be a contra \(\mu\)-continuous mapping. Let \(A\) be any \(\mu\)-open set in \((Y, \mu_2)\). Since \(f\) is a contra \(\mu\)-continuous mapping, \(f^{-1}(A)\) is a \(\mu\)-closed set in \((X, \mu_1)\). Since every \(\mu\)-closed set is a \(\mu\)-\(\beta\)-generalized \(\alpha\)-closed set, \(f^{-1}(A)\) is a \(\mu\)-\(\beta\)-generalized \(\alpha\)-closed set in \((X, \mu_1)\). Hence \(f\) is a contra \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mapping.

Example 5.1.4: Let \(X = Y = \{a, b, c, d\}\) with \(\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}\) and \(\mu_2 = \{\emptyset, \{d\}, Y\}\). Let \(f: (X, \mu_1) \rightarrow (Y, \mu_2)\) be a mapping defined by \(f(a) = a, f(b) = b, f(c) = c, f(d) = d\). Now, \(\mu\)-\(\beta\)O(X) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c, d\}\}

\(\mu\)-\(\beta\)O(Y) = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, c, d\}\}. Let \(A = \{d\}\) be a \(\mu\)-open set in \((Y, \mu_2)\). Then \(f^{-1}(\{d\})\) is a \(\mu\)-\(\beta\)-generalized \(\alpha\)-closed set, but not \(\mu\)-closed as \(c_\beta(f^{-1}(A)) = c_\beta(\{d\}) = \{b, d\} \neq f^{-1}(A)\) in \((X, \mu_1)\). Hence \(f\) is a contra \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mapping, but not a contra \(\mu\)-continuous mapping.

Theorem 3.5: Every contra \(\mu\)-\(\alpha\)-continuous mapping is a contra \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mapping in general.

Proof: Let \(f: (X, \mu_1) \rightarrow (Y, \mu_2)\) be a \(\mu\)-\(\alpha\)-contra continuous mapping. Let \(A\) be any \(\mu\)-open set in \((Y, \mu_2)\). Since \(f\) is a \(\mu\)-\(\alpha\)-contra continuous mapping, \(f^{-1}(A)\) is a \(\mu\)-\(\alpha\)-closed set in \((X, \mu_1)\). Since every \(\mu\)-\(\alpha\)-closed set is a \(\mu\)-\(\beta\)-generalized \(\alpha\)-closed set, \(f^{-1}(A)\) is a \(\mu\)-\(\beta\)-generalized \(\alpha\)-closed set in \((X, \mu_1)\). Hence \(f\) is a contra \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mapping.

Remark 3.6: A contra \(\mu\)-pre-continuous mapping is not a contra \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mapping in general.

Example 3.7: Let \(X = Y = \{a, b, c\}\) with \(\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}\) and \(\mu_2 = \{\emptyset, \{a\}, Y\}\). Let \(f: (X, \mu_1) \rightarrow (Y, \mu_2)\) be a mapping defined by \(f(a) = a, f(b) = b, f(c) = c\). Now,
\[\mu^{-}\beta \text{O}(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, c\}, X\}. \]

Let \(A = \{a\} \), then \(A \) is a \(\mu \)-open set in \((Y, \mu_2) \). Then \(f^{-1}(\{a\}) \) is a \(\mu \)-pre closed set as \(c_{\mu}(i_{\mu}((f^{-1}(A)))) = c_{\mu}(i_{\mu}((a))) = \emptyset \subseteq f^{-1}(A) \), but not a \(\mu \)-generalized \(\alpha \)-closed set as \(\alpha c_{\mu}(f^{-1}(A)) = X \not\subseteq U = \{a, b\} \) in \((X, \mu_1) \). Hence \(f \) is a contra \(\mu \)-pre-continuous mapping, but not a contra \(\mu \)-generalized \(\alpha \)-continuous mapping.

Remark 3.8: A contra \(\mu \)-\(\beta \)-continuous mapping is not a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping in general.

Example 3.9: Let \(X = Y = \{a, b, c\} \) with \(\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, c\}, X\} \) and \(\mu_2 = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, \{a, c\}, X\} \). Let \(f: (X, \mu_1) \rightarrow (Y, \mu_2) \) be a mapping defined by \(f(a) = a, f(b) = b, f(c) = c \). Now,

\[\mu^{-}\beta \text{O}(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, c\}, X\}. \]

Let \(A = \{a\} \), then \(A \) is a \(\mu \)-open set in \((Y, \mu_2) \). Then \(f^{-1}(\{a\}) \) is a \(\mu \)-\(\beta \)-closed set as \(i_{\mu}(c_{\mu}((f^{-1}(A)))) = i_{\mu}(c_{\mu}((a))) = \emptyset \subseteq f^{-1}(A) \), but not \(\mu \)-\(\beta \)-generalized \(\alpha \)-closed set as \(\alpha c_{\mu}(f^{-1}(A)) = X \not\subseteq U = \{a, b\} \) in \((X, \mu_1) \). Hence \(f \) is a contra \(\mu \)-\(\beta \)-continuous mapping, but not a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

In the following diagram, we have provided the relation between various types of contra \(\mu \)-continuous mappings.

\[\begin{array}{ccc}
\text{contra} & \text{\(\mu \)-continuous} \\
\text{contracontra} & \text{\(\mu \)-\(\alpha \)-continuous} \\
\text{\(\mu \)-\(\beta \)-continuous} & \text{\(\mu \)-\(\beta \)-\(\alpha \)-continuous} \\
\text{contra mu-pre-continuous} \\
\end{array} \]

Theorem 3.10: A mapping \(f: (X, \mu_1) \rightarrow (Y, \mu_2) \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping if and only if the inverse image of every \(\mu \)-closed set in \((Y, \mu_2) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set in \((X, \mu_1) \).

Proof: Necessity: Let \(F \) be a \(\mu \)-closed set in \((Y, \mu_2) \). Then \(Y-F \) is a \(\mu \)-open in \((Y, \mu_2) \). Then \(f^{-1}(Y-F) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-closed set in \((X, \mu_1) \), by hypothesis. Since \(f^{-1}(Y-F) = X - f^{-1}(F) \), Hence \(f^{-1}(F) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set in \((X, \mu_1) \).

Sufficiency: Let \(F \) be a \(\mu \)-open set in \((Y, \mu_2) \). Then \(Y-F \) is a \(\mu \)-closed in \((Y, \mu_2) \). By hypothesis, \(f^{-1}(Y-F) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set in \((X, \mu_1) \). Since \(f^{-1}(Y-F) = X - f^{-1}(F) \), Hence \(f^{-1}(F) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set in \((X, \mu_1) \). Hence \(f \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

Theorem 3.11: Let \(f: (X, \mu_1) \rightarrow (Y, \mu_2) \) be a mapping and let \(f^{-1}(V) \) be a \(\mu \)-open set in \((X, \mu_2) \) for every closed \(V \) set in \((Y, \mu_2) \). Then \(f \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

Proof: Let \(V \) be a \(\mu \)-closed set in \((Y, \mu_2) \). Then \(f^{-1}(V) \) be a \(\mu \)-open set in \((X, \mu_1) \), by hypothesis. Since every \(\mu \)-open set is \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set in \(X \). Hence \(f^{-1}(V) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set in \((X, \mu_1) \). Hence \(f \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

Theorem 3.12: If \(f: (X, \mu_1) \rightarrow (Y, \mu_2) \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping and \(g: (Y, \mu_2) \rightarrow (Z, \mu_3) \) is a \(\mu \)-continuous mapping then \(g \circ f: (X, \mu_1) \rightarrow (Z, \mu_3) \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

Proof: Let \(V \) be any \(\mu \)-open set in \((Z, \mu_3) \). Then \(g^{-1}(V) \) is a \(\mu \)-open set in \((Y, \mu_2) \), since \(g \) is a \(\mu \)-continuous mapping. Since \(f \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping, \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-closed set in \((X, \mu_1) \). Therefore \(g \circ f \) is a contra \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

Theorem 3.13: If \(f: (X, \mu_1) \rightarrow (Y, \mu_2) \) is a contra \(\mu \)-continuous mapping and \(g: (Y, \mu_2) \rightarrow (Z, \mu_3) \) is a contra \(\mu \)-continuous mapping then \(g \circ f: (X, \mu_1) \rightarrow (Z, \mu_3) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

Proof: Let \(V \) be any \(\mu \)-open set in \((Z, \mu_3) \). Since \(g \) is a \(\mu \)-continuous mapping, \(g^{-1}(V) \) is a \(\mu \)-closed set in \((Y, \mu_2) \). Since \(f \) is a contra \(\mu \)-continuous mapping, \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is a \(\mu \)-open set in \((X, \mu_1) \). Since every \(\mu \)-open set is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set, \((g \circ f)^{-1}(V) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-open set in \((X, \mu_1) \). Therefore \(g \circ f \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.

Theorem 3.14: If \(f: (X, \mu_1) \rightarrow (Y, \mu_2) \) is a contra \(\mu \)-\(\alpha \)-continuous mapping and \(g: (Y, \mu_2) \rightarrow (Z, \mu_3) \) is a contra \(\mu \)-continuous mapping then \(g \circ f: (X, \mu_1) \rightarrow (Z, \mu_3) \) is a \(\mu \)-\(\beta \)-generalized \(\alpha \)-continuous mapping.
Proof: Let V be any μ-closed set in (Z, μ₁). Since g is a μ-contra continuous mapping, g⁻¹(V) is a μ-open set in (Y, μ₂). Since f is a μ-α-contra continuous mapping, (g \circ f)⁻¹(V) = f⁻¹(g⁻¹(V)) is a μ-α-closed set in (X, μ₁). Since every μ-α-closed set is a μ-β-generalized α-closed set, (g \circ f)⁻¹(V) is a μ-β-generalized α-closed set in (X, μ₁). Therefore g \circ f is a μ-β-generalized α-continuous mapping.

Theorem 3.15: If f: (X, μ₁) \rightarrow (Y, μ₂) is a μ-continuous mapping and g: (Y, μ₂) \rightarrow (Z, μ₃) is a contra μ-continuous mapping then g \circ f: (X, μ₁) \rightarrow (Z, μ₃) is a contra μ-β-generalized α-continuous mapping.

Proof: Let V be any μ-open set in (Z, μ₃). Since g is a contra μ-continuous mapping, g⁻¹(V) is a μ-closed set in (Y, μ₂). Since f is a μ-α-contra continuous mapping, (g \circ f)⁻¹(V) = f⁻¹(g⁻¹(V)) is a μ-closed set in (X, μ₁). Since every μ-closed set is a μ-β-generalized α-closed set, (g \circ f)⁻¹(V) is a μ-β-generalized α-closed set. Therefore g \circ f is a contra μ-β-generalized α-continuous mapping.

4. ALMOST CONTRA μ-β-GENERALIZED α-CONTINUOUS MAPPINGS

In this section we have introduced almost contra μ-β-generalized α-continuous mapping in generalized topological spaces and studied some of their basic properties.

Definition 4.1: A mapping f: (X, μ₁) \rightarrow (Y, μ₂) is called an almost contra μ-β-generalized α-continuous mapping if f⁻¹(A) is a μ-β-generalized α-closed set in (X, μ₁) for each μ-regular open set A in (Y, μ₂).

Example 4.2: Let X = Y = \{a, b, c\} with μ₁ = \{Ø, \{a\}, \{a, b\}, \{a, b, c\}, Y\} and μ₂ = \{Ø, \{a\}, \{a, b\}, \{a, b, c\}, Y\}. Let f: (X, μ₁) \rightarrow (Y, μ₂) be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ-βO(X) = \{Ø, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, c\}, X\}.

Let A = \{c\}, then A is a μ-regular open set in (Y, μ₂). Then f⁻¹(\{c\}) is a μ-β-generalized α-closed set in (X, μ₁). Hence f is an almost contra μ-β-generalized α-continuous mapping.

Theorem 4.3: Every almost contra μ-continuous mapping is an almost contra μ-β-generalized α-continuous mapping but not conversely.

Proof: Let f: (X, μ₁) \rightarrow (Y, μ₂) be an almost contra μ-continuous mapping. Let A be any μ-regular open set in (Y, μ₂). Since f is almost contra μ-continuous mapping, f⁻¹(A) is a μ-closed set in (X, μ₁). Since every μ-closed set is a μ-β-generalized α-closed set, f⁻¹(A) is a μ-β-generalized α-closed set in (X, μ₁). Hence f is an almost contra μ-β-generalized α-continuous mapping.

Example 4.4: Let X = Y = \{a, b, c, d\} with μ₁ = \{Ø, \{a\}, \{a, c\}, X\} and μ₂ = \{Ø, \{d\}, \{a, b, c\}, Y\}. Let f: (X, μ₁) \rightarrow (Y, μ₂) be a mapping defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Now, μ-βO(X) = \{Ø, \{a\}, \{c\}, \{a, b\}, \{a, d\}, \{b, c\}, \{a, c, d\}\}.

Let A = \{d\}, then A is a μ-regular open set in (Y, μ₂). Then f⁻¹(\{d\}) is a μ-β-generalized α-closed set, but not μ-closed as cμ(f⁻¹(\{d\})) = cμ(\{b, d\}) = \{b, d\} ≠ f⁻¹(A) in (X, μ₁). Hence f is an almost contra μ-β-generalized α-continuous mapping, but not almost contra μ-continuous mapping.

Theorem 4.5: Every almost contra μ-α-continuous mapping is an almost contra μ-β-generalized α-continuous mapping in general.

Proof: Let f: (X, μ₁) \rightarrow (Y, μ₂) be an almost contra μ-α-continuous mapping. Let A be any μ-regular open set in (Y, μ₂). Since f is an almost contra μ-α-continuous mapping, f⁻¹(A) is a μ-α-closed set in (X, μ₁). Since every μ-α-closed set is a μ-β-generalized α-closed set, f⁻¹(A) is a μ-β-generalized α-closed set in (X, μ₁). Hence f is an almost contra μ-β-generalized α-continuous mapping.

Remark 4.6: An almost contra μ-β-pre-continuous mapping is not an almost contra μ-β-generalized α-continuous mapping in general.

Example 4.7: Let X = Y = \{a, b, c\} with μ₁ = \{Ø, \{a\}, \{a, b\}, \{a, b, c\}, Y\} and μ₂ = \{Ø, \{a\}, \{a, b\}, \{a, b, c\}, Y\}. Let f: (X, μ₁) \rightarrow (Y, μ₂) be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ-βO(X) = \{Ø, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, c\}, X\}.

Let A = \{a\}, then A is a μ-regular open set in (Y, μ₂). Then f⁻¹(\{a\}) is a μ-pre closed as cμ(\{a\}) = \{Ø \subseteq f⁻¹(\{a\})\}, but not μ-β-generalized α-closed set as αcμ(f⁻¹(\{a\})) = X ≠ U = \{a, b\} in (X, μ₁). Hence f is an almost contra μ-continuous mapping.
Remark 4.8: An almost contra μ-β-continuous mapping is not an almost contra μ-β-generalized α-continuous mapping in general.

Example 4.9: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by $f(a) = a$, $f(b) = b$, $f(c) = c$. Now,

$$\mu_\beta O(X) = \{\emptyset, \{a\}, \{b, c\}, \{a, c\}, X\}.$$

Let $A = \{a\}$, then A is a μ-regular open set in (Y, μ_2). Then $f^{-1}(\{a\})$ is a μ-β-closed set as $i_\mu(c_\mu(i_\mu(f^{-1}(A)))) = i_\mu(c_\mu((a)))) = \emptyset \subseteq f^{-1}(A)$, but not a μ-β-generalized α-closed set as $\alpha c_\mu(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1). Hence f is an almost contra μ-β-continuous mapping, but not almost contra μ-β-generalized α-continuous mapping.

In the following diagram, we have provided the relation between various types of almost contra μ-continuous mappings.

![Diagram showing the relationship between different types of mappings]

Theorem 4.10: A mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is an almost contra μ-β-generalized α-continuous mapping if and only if the inverse image of every μ-regular closed set in (Y, μ_2) is a μ-β-generalized α-open set in (X, μ_1).

Proof:

Necessity: Let F be a μ-regular closed set in (Y, μ_2). Then $F = f^{-1}(U)$ for some μ-open set U in (Y, μ_2). Since f is a μ-β-generalized α-continuous mapping, $f^{-1}(U)$ is a μ-β-generalized α-closed set in (X, μ_1). Therefore $f^{-1}(F)$ is a μ-β-generalized α-open set in (X, μ_1).

Sufficiency: Let F be a μ-regular open set in (Y, μ_2). Then $F = f^{-1}(U)$ for some μ-closed set U in (Y, μ_2). By hypothesis, $f^{-1}(U)$ is a μ-β-generalized α-open set in (X, μ_1). Hence $f^{-1}(F)$ is a μ-β-generalized α-closed set in (X, μ_1). Hence f is an almost contra μ-β-generalized α-continuous mapping.

Theorem 4.11: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ-continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost contra μ-continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is an almost contra μ-β-generalized α-continuous mapping.

Proof: Let V be any μ-regular open set in (Z, μ_3). Since g is an almost contra μ-continuous mapping, $g^{-1}(V)$ is a μ-closed set in (Y, μ_2). Since f is a μ-continuous mapping, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ-closed in (X, μ_1). Hence f is an almost contra μ-β-generalized α-continuous mapping.

Theorem 4.12: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ-α-continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost contra μ-continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a contra μ-β-generalized α-continuous mapping.

Reference

4. Kowalski, M. And Jayanthi, D., μ-β-generalized α-closed sets in generalized topological spaces (submitted).