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ABSTRACT

The contribution of this paper is in suggesting
analysis and design of a control system with véei
parameters. By applying theecommended by tF
author method of the Advanced gartitioning the
system’s stability can be analyzed in details.

method defines regions of stability in the spac¢he
system’s parameters. The designed controlle
enforcing desired system perfomt&. The suggeste
technique for analysis and design is essential
beneficial for the further development of con
theory in this area.

Keyword: System with variable parameters, Sability
regions, System performance

l. INTRODUCTION

Control systems performance must be insensitiv
parameter variations. In the process of design s
control system, it is important to determine
regions stability, related to the variation of gyestenr
parameters. The suggested by the authoihod,
dealing with the effects of parameters variatiomns
the system’s stability, is classified as Advance-
partitioning [1], [2], [3]. It is an efficient toofor
system stability analysis in case of variation oy af
the system’s parameters. It igther upgraded in thi
paper and can be used for simultaneously var
parametersThis research is also suggesting a me'
for design of a controller, by applying forw-series
compensation. It can suppress the influence of
parameters variations ofthe control systen
Innovation is demonstrated in the unique propeft
the designed controller that can operate effectifas
variations of any one of the system’s parame
within prescribed limits. The design of the conigp
is based on the ITAEriterion [4], [5]. For highe
order systems, a pair of dominant poles represbe
system dynamics. The relative damping ri{ of the

system is taken as a performance objective for
optimization design.

. System with Simultaneously Variable
Parameters
The Advanced DRartitioning analysis in case of tv
simultaneously variable parameters [2], [4], [6h ¢
demonstrated for @ontrol system of thearmature-
controlled dc motor and a ty-driving mechanism.
The gain and one of the ti-constants are uncertain
and variable. The opdoop transfer function of th
system can be presented a-

Gro (9) = A

(1)
@L+Ts)(1+ 05s)(1+0.8s)

The characteristic equation of the unity feedb
system is derived as:

K+ @+Ts)(1+ 05s)(1+0.85)=0 2
By substitutings = j wequation (2) is modified t
K =-1+ @37 + 04)a? + ja (04Ta? -13-T) (3)

Since the gain may have only real values,
imaginary term of equation (3) is set to zero. T
13+T
0.4T

w? =

(4)

The result of (4) is substituted into the real pair

equation (3), from where:

K = 1372+ 169T + 052
04T

13

= 3257 +4.225+ > (5)

The D-Partitioning curv& = f (T) is plotted with the
aid of the following code:

>>T =0:0.1:5;
>>K =3.25*5T+4.225+1.3./T
K=
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Columns 1 through 10
Inf 175500 11.3750 9.5333 8.7750 8.4500
8.3417 8.3571 8.4500 8.5944

Columns 11 through 20
8.7750 8.9818 9.2083 9.4500 9.7036 9.9667
10.2375 10.5147 10.7972 11.0842

Columns 21 through 30
11.3750 11.6690 119659 12.2652 12.5667
12.8700 13.1750 13.4815 13.7893 14.0983

Columns 31 through 40
144083 14.7194 15.0313 153439 15.6574
159714 16.2861 16.6014 16.9171 17.2333

Columns 41 through 50
175500 17.8671 18.1845 185023 18.8205
19.1389 19.4576 19.7766 20.0958 20.4153

Column 51
20.7350
>> Plot (T, K)

D-Partitioning by Two Variable Parameters {System Type 0)
22 : : : : : : : : :
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Fig.1. Advanced CRartitioning in terms of twi

variable parameters

The D-Partitioning curveK = f (T) defines the

border between the region of stabiliD (0) and
instability D(1) for case of simultaneous variatioh
the two system parameters. Each point of tt-

Partitioning curve represents the marginal value
the two simultaneously variable paranrs. This is a
unique advancement and an innovation in the th
of control systems stability analysis. T
demonstration of the system performance in cas
variation of the time-constaftis done at gain set i

system is stable. But it becomes unstable in thgea
0.25 sec <T < 1.5 sec. It is also obvious that i
system performance and stability depends on
interaction between the two simultaneously van
parameters. If K < 8.3417, the syste is stable for
any value of thel. Higher values oK (K = 12,K =
14), enlarge the range dfat which the system wi
fall into instability.
[I1.  Design of a Controller for Systems with
Simultaneously Variable Parameters
The open-loop transfdunction of the plar Gpy(s) is
modified and now presented in equation
consideringthe two variable parameters that are
system’s gainK and timeeonstantT. Initially, it is
suggested that the gain is setK = 10, whileT is
variable [5], [7], [8].
K

Gro(9) = (1+Ts)(1+ 05s)(1+0.8s)

K
04TS® + (13T + 04)s® + (1L3+T)s+1

(6)

The robust controller consists of a series sGg(S)
and a forward stag8ro(s). An integrating stacG,o(s)
is also included in the controller as seen fiFigure

2,
-?_[ 6ot ]—‘[ s ]

Robust Controller

R(s) C(s)

{ Gra (5) }

Plant

Fig.2.Robust controller incorporatédnto the control
systen

Initially, the plant transfer functiorGpy (s), as a
standalone block, is involved in a unity feedb

system having a closdoop transfer functiol
presented as:
K
GeL () = =
L+T9 @+ 05s)(1+0.8s) + K 7)
K

 0A4TS® + (L3T + 04)s” + (L3+T)s+1+K

Equation (7) is used as a base in the design gy
for constructing the series stage of the rol
controller. It has the task to place its two zenesr
the desired dominant closéabp poles, that satisfy
the condition{ = 0.707 [9], [10. These zeros will
become the dominant poles of the unity nege
feedback system, involving the cascade connectiic

K =10. When 0 <T < 0.25 sec and > 1.5 sec the the series controller stagay(s), the integratoiGio(s)
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and the planGpy(s). If initially the gain is set tK =
10, the optimal vale of the tim-constant T,
corresponding to the relative damping rel = 0,707
of the closedeop system, is determined by the cc

>>T=[20:0.01:35];

>> For n=1: length (T)

G_array(:,:,n)=tf([10],[0.4* T (n)(1.3* T (n)+0.4)
(1.3+T(n)) 11]);end

>> [y, z] = damp (G_array);

>> [y, z] = damp (G_array);

>> Plot (T,z(1,:))

Relative Damping Ratio in Terms of Time-Constant
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0.75r
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20
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Figure3. Timeeonstant corresponding = 0,707

35

As seen from Figure 3, thelative damping ratio is
{'=0.707 when the time-constanflis 27.06 sec

By substituting the valueb= 27.06 sec anK = 10 in

equation (7), the transfer function of the clc-loop
system becomes:

10

G ()=

10.824s® +35578s° + 28.36s +11

(8)

The assessment of the system proves tharelative
damping ratio become$§ = 0.707, when the time-
constant isT = 27.06 sec, resulting in system’s desi
closed-loop poles-0.466+ j0.466. These outcom:
are determined from the code:

>> GCLO0=tf([10],[10.824 35.578 28.36 11])
>> damp (GCLO)

Eigenvalue Damping Freq. (rad/s)
-4.64e-001 + 4.64e-001i 7.07e-001  6.56e-001
-4.64e-001 - 4.64e-001i 7.07e-001  6.56e-001
-2.36e+000 1.00e+000 2.36e+000

The series robust controller zeros can be placéae:
approximated values-0.5 + j0.5. Therefore, the
transfer function of the series robust controGgy(s)

is:
(s+05+ j05)(s+05-j05)
Ggo(8) = o5 -

_ s> +s+05
05

(9)

An integrating stage&sio(s) is added to eliminate tl
steadystate error of the system. It is connectec
cascade with the series controller. Then, the teal
function of the compensated o|-loop control system
will be as follows:

GoL () = G 5(8)Gsp (S)Gpy(S) =

- K(s? +s+ 05)
05s(@+ Ts)(1+ 05s)(1+ 0.8s)

(10)

When Gg((s) is involved in a unity feedback,
closedloop transfer function is determined

K(s? + s+ 05)
05s(L+Ts)(L+ 05s)(1+ 08s) j (11)

G () =
L K(s? +s+ 05)
It is seen from the equation (11) that the cl-loop
zeros will attempt to cancel the closed loop pak
the system, being in their areThis problem can be
avoided if a forward controlleGgo(s) is added to the
closedloop system, as shown Figure 2. The poles
of Gro(s) are designed to cancel the zeros of
closedloop transfer functionGg.(s), as shown in
equation (12):
05

Geo(8)=—F———
& sz+s+0.5

(12)

Finally, the transfer function of the total compates|
system is derived considering the diagrarFigure 2.
Gro(8) =G Gepos(s) =

K

= 13
0.2Ts* + (065T + 0.2)s® + (13)

+ (065+ 05T)s? + 055+ K (s% + s+ 05)

IV.  Performance of the Compensated System

The system is tested for insensitivity to variatiarf
its gainK and its timeeonstaniT. Comparison of its
performance is done before and after applying
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robust compensation. Initially at system gain istet
K =10 and three di#irent values of the tir-constants
are set successively To= 0.1 secT = 0.8 sec anT =

2 sec and are substituted in equat@®n

The case off = 0.8 sec, corresponds to the rec
D(2) and definitely to an unstable control systdine
cases off = 0.1 sec and = 2 sec, reflect regior
D1(0) and D2(0) accordingly and are related t
stable control system.

The transient responses of the system before ayuy
the robust compensation are illustrated in Figuaad
Figure 5 and are achieved Ilhetfollowing code:

>> Gp001=tf ([0 10],[0.04 0.53 1.4 1])

>> Gp02= tf ([0 10],[0.8 33.3 1])

>> GpOfb001= feedback (Gp001, 1)

>> Gp0fb02= feedback (Gp02, 1)

>> Step (Gp0fb001, GpOfb02)

Step Response of the Original System Type 0
(Cases T=0.1sec, T = 2.0 sec)

Amplitude

Time (sec)

Fig.4.Step responses of the original control system

(T =0.1sec, T 2sec at K = 1(

>> Gp008=tf([0 10],[0.32 1.44 2.1 1])
>> GpOfb008= feedback (Gp001,1)
>> step (GpOfb008)

Step Response of the Original System Type 0
(Case T = 0.8sec)

40

B R R .

Amplitude

40 i i i i i i i i
0 5 10 15 20 25 30 35 10 45
Time (sec)

Fig.5.Step responses of the original control sy:
(T =0.8sec, at K =10)

The compensated systens also examined for
robustness in the timgemain. Considering the sar
values of the time&onstant, as those used for
assessment of the original syst¢T = 0.1 secT = 0.8
sec andT = 2 sec at system galK = 10 and
substituting them in equatio(13), the following
transfer functions are obtain
10

G, () = (14)
T=01" 004s* + 0533 + 21.452 + 21s +10
10
GTO(S)T - 08 = (15)
=08 032s* +144s% + 22.15% + 21s+10
10
GTO(S)T L, (16)

2 08s* +3s®+23.38% +21s+10

The step responses, representing time-constant
variation of the robust system, shown in Figurar@,
determined by the code:

>> GTO01=tf([10], [0.04 0.53 21.4 21 10Q])

>> GTO8=tf([10], [0.32 1.44 22.1 21 10])

>> GT20=tf([10], [0.8 3 23.3 21 10])

>> step (GTOL, GT08, GT20)

Step Response of the System Type 0 with a Robust Controller

L R R e e 1
T4 S N N N S
| — S e —— S
° :
]
g 08 _____________________________________________________________________________
I
-SSR RSN NSRS SRS N S
: : ‘ (|——T=01sec
020 fee —— T=0.8sec |-
: : : | —— T=20sec
0 i i I i i
0 2 4 6 8 10 12

Time (sec)
Fig.6. Step responses of tisystem with a robust
controller(T =0. 1 sec, T=0.8sec, T =2 sec at
10)

As seen from Figure ,6due tc the applied robust
controller, the control system becomes (Q
insensitive to variation of the tir-constantT. The
step responses forT =0. 1 secT =0. 8 sec and =
2 sec coincide.

Since the system is with two variable parameterg
the gain will be changed, applyirKk =5,K = 10,K =
20, while keeping the system’s ti-constant afl =
0.8 sec. For@amparison of the system’s insensitiv
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to the gain variation before and after applying
robust compensation, initially the suggested vahs
shown above are substituted in equat(6). The
transient responses of the original system
illustrated n Figure 7 and 8 and are achieved by
following codes:

>> Gp05=tf([05],[0.32 1.44 2.1 1])
>> Gp010=tf([0 10],[0.32 1.44 2.1 1])
>> GpOfb5=feedback (Gp05, 1)

>> Gp0fbl0=feedback (Gp010, 1)

>> Step (GpOfb5, GpOfb10)

>> Step (GpOfb5, GpOfb10)

Step Response of the Original System Type 0
(Cases K =5,K =10)

2.5
3 N S S YRS SRR [ NS S .
P A S Y W A
© ; ;
T 1S VPR W S SO N L RLITTI [ .
=) - s
= :
= : ! : ;
E o051} beeoos B I bt ok SUEFE CERPEYEEEE] EFEEEE EEFRERTRR SEEES
<L H H H H
o N SN T W N L T O
T T I [y
: : ——K=10
1 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig.7. Stepresponses of the original control sys
(K=5,K=10atT =0.8se

>> Gp020=tf([0 20],[0.32 1.44 2.1 1])
>> GpOfb5=feedback (Gp05, 1)

>> GpOfbl0=feedback (Gp010, 1)

>> GpOfb20=feedback (Gp020, 1)

>> step (GpOfb20)

Step Response of the Original System Type 0
(Case K = 20}

10

Amplitude

0 0.5 1 1.5 2 2!5 3 35 1 1.5 5
Time (sec)

Fig.8. Step response of the original crol system

(K=20at T =0.8sec)

It is obvious that the cases K = 10 andK = 20,
correspond to an unstable original control sys:

Next, the variable gaiK = 5,K = 10,K = 20 will be
applying to the robust compensated system, kee
the system’s timeonstant atT = 0.8 sec. These
values are substituted in equat(13). As a result, the
following outcomes are delivere

5
GTO(S)K _5 (17)
= 032s* + 144s® +12.1s® +11s +5
10
GTo(S)K - 10 = (18)
= 032s* + 144s® + 22.1s? + 21s + 10
20
GTO(S)K = 20 - (19)

0.32s* +1.44<® + 42.1s® + 41s + 20

To compare the system robustness before and hé&
robust compensation, the step responses for tee
different cases, representing the gain variatiothe
robust system, arplotted in Figure9 with the aid of
the code as shown below:

>> GTK5=tf([2.5],[0.16 0.72 6.05 5.5 2.5])
>> GTK10=tf([5],[0.16 0.72 11.05 10.5 5])
>> GTK20=tf([10],[0.16 0.72 21.05 20.5 10])
>> gtep (GTK5, GTK10, GTK20)

Step Response of the System Type 0 with a Robust Controller

]  — R
N

S S

] USSR WENISP” 48 SNSRI SUURSS SRR ]
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T

7| S S SO N S——

T I A S S B | —— k=10
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Time (sec)
Figure9. System’step respnses with the robust
controller(K =5, K=10, K=20 at T = 0.sec)

Again, the system became robust. An additional
included into the series robust controller stage
further improve the rise time of the system’s ¢
response.

An average case is chosen wK = 10 andT = 0.8
sec for the assessment of thetem’s performance
after the application of the robust controller. S hase

@ IJTSRD | Available Online @ww.ijtsrd.con | Volume —2 | Issue — 6 | S@pt 201!

Page: 273



International Journal of Trend in Scientific Res#aand Development (IJTSRD) ISSN: 2-6470

will differ insignificantly from the other cases die
discussed variableK and T. The performanc
evaluation is achieved by following co

>> GT10=tf ([10], [0.32 1.44 22.1 21 10])

>> damp (GT10)

Eigen value Damping Freq. (rad/s)
-4.91e-001 + 4.89e-001i  7.09e-001  6.93e-001
-4.91e-001 - 4.89e-001i  7.09e-001  6.93e-001
-1.76e+000 + 7.88e+000i 2.18e-001  8.07e+000
-1.76e+000 - 7.88e+000i 2.18e-001  8.07e+000

It is seen that the relative damping ratio enforbg«
the system’s dominant poles{ds= 0.709, being ver
close to the objective value af = 0.707. This
insignificant difference is due to the roundingtbé
desired system’s poles t60.5 + j0.5, during the
design of the series robust controller st

V. Conclusions

The D-+artitioning analysis is further advanced
systems with multivariable parameters [8], [9], ]l
The Advanced Dpartitioning in case two variab
parameters is demonstrating the strong interas
between the variable parameters. Each point « D-
Partitioning curve represents the marginal value
the two simultaneously variable parameters, bei
unique advancement and an innovation in the th
of control systems stability analysis.

The design strategy of a robust controller for dir
control systems proves that by implementing des
dominant system poles, the controller enforces
required relative damping ratio and sysi
performance. For systems Type 0, an additi
integrating stage ensures a steathte error equal 1
zero.

The designed robust controller brings the system
state of insensitivity to the variation §é parameters
within specific limits of the parameter variatiofi$e
experiments with variation of different paramet
show only insignificant difference iperformance fo
the different system conditions [10], [11], [1

For the discussed case, the system becomes
insensitive to variation of the time constant wntkthe
limits 0.1T < T < 10T. The system is quite insensiti
to variations of the gaii within the limits 0.\K < K
< BK. Insignificant step response difference
observed also if the experiment is repeated

different variation of the gain and different vaioa
time-constants values.

Since the design of the robust controller is d on
the desired system performance in terms of rel:
damping, its contribution and its unique propes
that it can operate effectively for any of the sysi’s
parameter variations or simultaneous variation |
number of parameters. This propert demonstrated
by the comparison of the system’s performance b
and after the application of the robust controTests
demonstrate that the system performance in tern
damping,stability and time respon remains robust
and insensitive in case ahy simultaneous variatiol
of the gain and the timeonstant within specifi
limits. The suggested analysis and de is beneficial
for further advancement of control theory in field.
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