¢ of Trend in Scientific o
. v

International Journal of Trend in Scientific
Research and Development (IJTSRD)

.

— [—~"¢

*

Research and

Development .:

International Open Access Journal

*

" ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume-2 | Issue—-5

Fast Modular Multiplication using Parallel Prefix Adder

Sanduri Akshitha®, Mrs. P. Navitha?, Mrs. D. Mamatha?
PG Scholar’Assistant Professor
Dept d ECE (VLSI),CMR Institute of Technology,
Kandlakoya(V) Medchal-Road, Hyderabad, Telangaimaljia

ABSTRACT:

Public key cryptography applications involve use
large integer arithmetic operations which are cot@
intensive in term of power, delay and area. Mod
multiplication, which is frequently, used mc
resource hmgry block. Generally, last stage
modular multiplication is implemented by using e
propagate adder whose long carry chain takes
time. In this paper, modulo multiplicatic
architectures using Carry Save and Kc¢Stone
parallel prefix adder argresented to reduce tt
problem. Proposed implementations are faste
compared to conventional carry save adder and
propagate adder implementations.

1. INTRODUCTION

Modular arithmeticis a system of arithmetic fi
integers, which considers themainde. In modular
arithmetic, numbers "wrap around” upon reachir
given fixed quantity (this given quantity is knovas
the modulus) to leave a remainder. Mod
arithmetic is often tied to prime numbers, for arste,
in Wilson's theorem, Lucas's theor, and Hensel's
lemmag and generally appears in fie like
cryptography, computer scienceand compute
algebra.

An intuitive usage of modular arithmetic is with a-
hour clock. If it is 10:00 now, then in 5 hours
clock will show 3:00 instead of 15:00. 3 is |
remainder of 15 with a modulus of 12.

A number x mod N is the equivalent of asking fae
remainder of when didied by . Two integers and ¢
said to be congruent (or in the same equivals
class) modulo if tay have the same remainder uj

division by N. In such a case, we say that a=b (
N).

2. MONTGOMERY MODULAR

MULTIPLICATION

In modular arithmetic computation, Montgomery
modular multiplicationmore commonly referred to
Montgomery multiplicatio;: is a method fo
performing fast modular multiplication. It w.
introducel in 1985 by the American mathematic
Peter L. Montgomery.

Given two integersa and b and modulusN, the
classical modular multiplication algorithm compu
the double-width productab mod N, and then
performs a division, subtracting multiples N to
cancel out the unwanted high bits until the reme
is once again less thaN. Montgomery reduction
insteadadds multiples ofN to cancel out thlow bits
until the result is a multiple of a convenient (
power of two) constarR > N. Then the low bits are
discarded, producing a result less tl2N. One final
conditional subtract reduces this to lehanN. This
procedure avoids the complexity of quotient d
estimation and correction found in standdivision
algorithms.

The result is the desired product dind by R, which
is less inconvenient than it might appear. To mlyt
a andb, they are first converted Montgomery form
or Montgomery representati aR modN andbR mod
N. When multiplied, these produabR? mod N, and
the following Montgomery reduction producabR
mod N, the Montgomery form of the desir
product.(A final second Montgomery reducti
converts out of Montgomery form.)Converting to ¢

@ IJTSRD | Available Online @ www.ijtsrd.ci| Volume —2 | Issue —5 | Jul-A2@18

Page: 1770

International Journal of Trend in Scientific Resdaand Development (IJTSRD) ISSN: 2456-6470

from Montgomery form makes this slower than thesing carry save addition, the delay can be reduced
conventional or Barrett reduction algorithms for &urther still. The idea is to take 3 numbers tha w
single multiply. However, when performing manyvant to add together, x + y + z, and convert b i@t
multiplications in a row, as in modularnumbers c+ S suchthatx+y+z=c+ s, and do th
exponentiation, intermediate results can be left in O (1) time. The reason why addition cannot be
Montgomery form, and the initial and finalperformed in O(1)time is because the carry
conversions become a negligible fraction of th&formation must be propagated. In carry save
overall computation. Many important cryptosystemaddition, we refrain from directly passing on tlzerg
such as RSA and Diffie—Hellman key exchange amformation until the very last step. We will first
based on arithmetic operations modulo a largkustrate the general concept with a base 10 examp
number, and for these cryptosystems, the computatio

by Montgomery multiplication is faster than thélo add three numbers by hand, we typically align th

available alternatives. three operands, and then proceed column by column
in the same fashion that we perform addition witb t
An example numbers. The three digits in a row are added, ayd a

Let x = 43, y = 56, p = 97, R = 100. You want teverflow goes into the next column. Observe that
compute x * y (mod p). First you convert x and y tavhen there is some non-zero carry, we are really
the Montgomery domain. For X, compute x’ = X * Radding four digits (the digits of x, y and z, plie
(mod p) =43 * 100 (mod 97) = 32, and for y, congutcarry).
y' =y *R (mod p) =56 * 100 (mod 97) = 71.

carry: 1121

Compute a:=x"*y =32 * 71 = 2272. X: 12345

In order to zero the first digit, compute y: 38172

a:=a+ (4p) = 2272 + 388 = 2660. z +20587
In order to zero the second digit, compute

a:=a + (20p) = 2660 + 1940 = 4600. sum: 71104

Compute a:=a /R =4600/ 100 = 46.

The carry save approach breaks this process down
We have that 46 is the Montgomery representationioto two steps. The first is to compute the sum
X *y (mod p), that is, x * y * R (mod p). In ordéo ignoring any carries:
convert it back, compute a * (1/R) (mod p) = 465 6
(mod 97) = 80. You can check that 43 * 56 (mod 9% 12345
is indeed 80. y: 38172

z: +20587
3. CARRY SAVE ADDER
A Carry-Save Adder is just a set of one-bit fulls: 60994
adders, without any carry-chaining. Therefore, an n
bit CSA receives three n-bit operands, namely A(zach si is equal to the sum of xi +yi +ziModulo 10.
1)..A(0), B(n-1)..B(0), and CIN(n-1)..CIN (0), andNow, separately, we can compute the carry on a
generates two n-bit result values, SUM(n-1)..SUM (@olumn bycolumn basis:
and COUT(n-1)..COUT (0).

X: 12345
The most important application of a carry-save addg 38172
is to calculate the partial products in integex: +20587
multiplication. This allows for architectures, whea
tree of carry-save adders (a so calgallacetree)is ¢ 1011
used to calculate the partial products very faste O
'normal’ adder is then used to add the last seawf In this case, each ci is the sum of the bits frowm t
bits to the last partial products to give the fingbrevious column divided by 10 (ignoring any
multiplication result. Usually, a very fast cargek remainder). Another way to look at it is that aryrg
ahead or carry-select adder is used for this kagfes over from one column gets put into the next column.
in order to obtain the optimal performance.

@ IJTSRD | Available Online @ www.ijtsrd.com plMme — 2 | Issue —5 | Jul-Aug 2018 Page: 1771

International Journal of Trend in Scientific Resdaand Development (IJTSRD) ISSN: 2456-6470
Now, we can add together ¢ and s, and we’ll veritye figured from the past full adder. The door
b R Et ME hb
- H 1 Rl et Bl e Rl Rl <
X

that it indeed is equal to x +y + z. postponement can undoubtedly be figured by review
|
{—rr
. o e .
| G e | | A Al © e
Figure 3:4-bit ripple carry adder circuit diagram

1L

T
L
S

of the full adder circuit. Following the way fromirC
, B R [S T S 5|
Figure 1: The carry save adder block is the same

E to Cout indicates 2 doors that must be gone through
aiLiB M| o e
' 1 | L)
circuit as the full adder & i 5

Input Output
A | B Cin - o 5. PIPELINING
0 0 o 0 0 As the frequency of operation is increased, théecyc
= 5 ; - 5 time measured in gate delays contindesshrink.
Pipelining has emerged as the design technique of
L 1 0 1 g choice thathelps to achieve high throughput digital
0 1 1 0 1 systems. This technique brealdown a single
i 5 . 3 5 complex computational block into discrete blocks
separated by clock storage elements (CSE) -like
- o 1 " . flip-flops, latches. Pipelining improves throughpait
1 1 0 0 1 the expense of latency, however onitee pipe is
: " i " " filled we can expect one data item per unit of time
The gain in speed is achieved by clocking sub-
Figure 2:Truth table circuits faster and also achieves pattielay
equalization by inserting registers. As result, it
4. RIPPLE CARRY ADDER achieve performance gains also the propagation

At the point when numerous full adders are utilizeglelay and delay variatiomlecreasing. The project

with the carry ins and carry outs anchored togethgsed the applications of pipeline to achieve the
then this is known as a Ripple carry adder inspafht objective.

the fact that the right estimation of the carrydvitells
starting with one piece then onto the next (alltmle
figure 2.16). It is conceivable to make a coherer A
circuit utilizing a few full adders to include nuroes]
piece numbers. Each full adder inputs a Cin, winsch
the Cout of the past input. This sort of carry ipple .
carry adder, since each carry bit "ripples" to th G
following full adder. Note that the first (and jutste
principal) full adder might be supplanted by a half
adder.

5
Stage o

Slage Stage

e
P

Cout

= e e B
el — i

=

Figure 4:Pipeline applications in 16-bit CSA

Figure 2.13 shows how pipeline applications in CSA
circuit basedon CSA per stage. The design is in 3

The format of aripple carry adder is basic, which i
takes into consideration quick outline time; bet that stages of 6 operands .16'b't C.SA' Latches between
stages 1 and 2 store intermediate results of step 1

it may, the ripple carry adder is generally moderat; o
since each full adder must sit tight for the cdityto Used by stage 2 1o execute step 2 of algorithm’.
Stage 1 starts executing step 1 on next set of

@ IJTSRD | Available Online @ www.ijtsrd.com plMme — 2 | Issue — 5 | Jul-Aug 2018 Page: 1772

International Journal of Trend in Scientific Resdaand Development (IJTSRD) ISSN: 2456-6470

operands X, Y. Pipeline was just anothefhe calculated values are passed to next stage i.e.
transformation which is adding the delay andcalculation of carries. In this the componentssaen

retiming it based on clock using D-flitop. in the prefix graph.
i S0&Col S1&Cot 52&Co2 §38Co3
Iljpelmc produced Produced produced produced
Stage ProCassng component; buffer component;
A v ! !
. (g) (z0.)
Stage 3 Operation |Operation [Operation |Operation (B Pu,) i
L 2 3 4 s
= b P
Stage 2 Operation | Operation | Operation | Operation ,("_'_,.:I B Ly
| 2 3 4 v Vil
opa) Eopa) |
Stage 1 |Cperation | Operation | Operation | Operation .ol (Eoe)
1 2 i 4
0 T r ar ir ar 6 Time
AB0s ABLE ALEZ& ALELA e (2 P V= + 2 8o 2) (£ P)= (2P
Cioenter Cilenter CiZzenter Cilenter
Figure 5 Pipelining Timing Diagram Fig 7 Carry calculation of parallel prefix adder

Pipeline shows how it reduces delay by multiple amhe execution is done in parallel by decomposiagsmaller
overlap in execution. Based on the figure 2.14pjeces. The combining operator consists of two AND
when the inputs were given, theperation 1 gates and the OR gate. Each vertical stage produces
execute at the O time in ladder. The procegsspective propagate and generate values.
transforms continuously at the end of 3 times at tiG2 = G1 OR (GO AND P1)
stage 3 of pipeline. Withouytipeline, the operation p2 = P1 AND PO
2 would execute at the 3 times. But in this
diagram, the operation 2 execute next to the operatThe calculated carry values are forwarded to thst po
1 has begun. Thus, the delay can be reduced. Hr6cessing stage. In this stage the final sum sadue
process continuously executes per stage as exglaingalculated.

Sn =Pn XOR Cin
6. EXTENSION METHOD Here in this we are using kogge stone adder. One of
The CSA tree proposed in the paper will be enhance® parallel prefix adder is kogge stone adder.g€og
by adding faster adder like parallel prefix addéioh stone adder is used for high speed applicationstbut
would further reduce the delay and increase thedsp&onsumes more area.
of operation. The parallel prefix operation is diorie stages. o
l.e. pre processing stage, calculation of carrpasst
processing stage.

Pre-caiculation of P, G terms = Straigh forsard as
1 in the CLA adder
Calculation of the cames. Prefix graphs
can be used o
This part is parallelzable to :ﬁifll”imr
reduce time s \V,
it i G PY i Orr P
: [m @'/:f:.';’:;':;ff"“*"" tslamn J
Semple adder to generate the sum Straight foreard as
n e LA adder .
! Fig 8 Kogge Stone adder
Fig 6: Parallel prefix adder operation
REFERENCES
In the pre calculation stage propagate and generateR. L. Rivest, A. Shamir, and L. Adleman, “A
terms are calculated. method for obtaining digital signatures and public-
i.e. Pi= ai xor bi key cryptosystems,Commun. ACM, vol. 21, no.
gi= ai and bi 2, pp. 120-126, Feb. 1978.

@ IJTSRD | Available Online @ www.ijtsrd.com plMme — 2 | Issue —5 | Jul-Aug 2018 Page: 1773

International Journal of Trend in Scientific Resdaand Development (IJTSRD) ISSN: 2456-6470

Author profile:

2. V. S. Miller, “Use of elliptic curves in [g Sanduri Akshitha, she received
cryptography,” inAdvances in Cryptology. Berlin, | | bachelors of degree in 2015 from
Germany: Springer-Verlag, 1986, pp. 417-426. Electronics and Communication of

engineering from Sudheer Reddy

college of engineering and
ctechnoogy for women. She is
pursuing M.Tech in VLSI System

4. P. L. Montgomery, “Modular multlpllcatlon Design from CMR Institute of Technology.
without trial division,” Math. Comput., vol.
no. 170, pp. 519-521, Apr. 1985.

3. N. Koblitz, “Elliptic curve cryptosystems Math.
Comput., vol. 48, no. 177, pp. 203-209, 1987.

Mrs. P. Navitha

She is working as Assistant professor
in CMR Institute of Technology and
wﬁ‘ has 6 years experience in teaching

S field.

5.Y. S. Kim, W. S. Kang, and J. R. Choi
“Asynchronous implementation of 1024-bif% 2%
modular processor for RSA cryptosystem,” il "“é o =
Proc. 2nd IEEE Asia-Pacific Conf. ASC, Aug.
2000, pp. 187-190.

- Mrs. D. Mamatha

. She is working as Assistant professor in
. CMR institute of Technology nd has 4
years experience in teaching field

6. V. Bunimov, M. Schimmler, and B. Tolg, “A
complexity-effective version of Maontgomery’'s
algorihm,” in Proc. Workshop Complex. Effective

Designs, May 2002. Gt

7. H. Zhengbing, R. M. Al Shboul, and V. P.
Shirochin, “An efficient architecture of 1024-bits
cryptoprocessor for RSA cryptosystem based on
modified Montgomery’s algorithm,” ifProc. 4th
IEEE Int. Workshop Intell. Data Acquisition Adv.
Comput. Syst., Sep. 2007, pp. 643—646.

8. Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang,
“An efficient CSA architecture for Montgomery

modular multiplication,” Microprocessors
Microsyst., vol. 31, no. 7, pp. 456-459, Nov.
2007.

9. C. Mclvor, M. McLoone, and J. V. McCanny,
“Modified Montgomery modular multiplication
and RSA exponentiation technique$EZE Proc.-
Comput. Digit. Techn., vol. 151, no. 6, pp. 402—
408, Nov. 2004.

@ IJTSRD | Available Online @ www.ijtsrd.com plMme — 2 | Issue —5 |Jul-Aug 2018 Page: 1774

