
International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470
www.ijtsrd.com

434
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

Virtualization & Scheduling in Real Time OS: A Survey

Shabnam Kumari
Asst. Prof, Department of CSE,

Sat Kabir Institute of Technology
& Management, Bahadurgarh,

Haryana, India

Reema
Asst. Prof, Department of CSE,

Sat Kabir Institute of Technology
& Management, Bahadurgarh,

Haryana, India

Shahdab Payami
M Tech Scholar, Department of

CSE, Sat Kabir Institute of
Technology & Management,
Bahadurgarh, Haryana, India

ABSTRACT
virtualization is the creation of a virtual (rather than
actual) version of something, such as a hardware
platform, operating system (OS), storage device, or
network resources. In a virtualized environment,
computing environments can be produced in a
forceful dynamic manner, enlarged, become smaller
or go in a specified direction or manner as demand
varies. Virtualization is therefore highly suitable to a
dynamic cloud infrastructure, because it provides
important advantages in isolation, manageability and
sharing.

KEYWORD: Virtualization, Virtual Machine
Scheduler, Scheduling, Co-scheduling

INTRODUCTION

In computing, virtualization is the creation of a virtual
(rather than actual) version of something, such as a
hardware platform, operating system (OS), storage
device, or network resources.

While a physical computer in the classical sense is
clearly a complete and actual machine, both
subjectively (from the user's point of view) and
objectively (from the hardware system administrator's
point of view), a virtual machine is subjectively a
complete machine (or very close), but objectively
merely a set of files and running programs on an
actual, physical machine (which the user need not
necessarily be aware of).

Virtualization and cloud computing are transforming
IT. Cloud computing leverages virtualization to
enable a more scalable and elastic model for
delivering IT services. As a result, enterprises gain a
more agile and efficient IT environment that is better
able to respond to business needs. The principal driver
behind the rapid adoption of virtualization has been
cost reduction through server and other infrastructure
consolidation. With virtualization, enterprises are no
longer restricted to the traditional ratio of 1:1:1 for

servers, operating systems and applications.
Applications abstracted from the infrastructure enable
IT to turn underutilized infrastructure into an elastic,
resilient and secure pool of compute resources
available to users on demand.

Global IT organizations have been quick to adopt
virtualization to achieve cost benefits. By replacing
physical IT assets with virtual resources,
organizations are achieving up to 60 percent savings
in capital expenses in their datacenters. According to
IDC, server virtualization has become a standard
feature in datacenter environments over the last few
years, with virtual machine deployment outnumbering
physical server shipments in 2009.

A virtualization platform with embedded management
capabilities, such as high availability, automated load
balancing and fault tolerance, reduces infrastructure
complexity. Through automation and built-in
manageability, it eliminates many time-consuming
manual management tasks, significantly driving down
operational IT costs. Cost reduction, however, is
proving to be just one of the many benefits of
virtualization.

It is the technique that removes linking together the
hardware and operating system. It directs to the
source of the logical resources abstraction away from
their physical resources to be more flexible, reduce
costs and make a good improvement in business
value.

Essentially virtualizations in cloud have so many
different types, such as, network virtualization, server
virtualization and storage virtualization. Server
virtualization can be described as an associating of
single physical resources to several logical partitions
or representations. In a virtualized environment,
computing environments can be produced in a
forceful dynamic manner, enlarged, become smaller
or go in a specified direction or manner as demand
varies. Virtualization is therefore highly suitable to a

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470
www.ijtsrd.com

435
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

dynamic cloud infrastructure, because it provides
important advantages in isolation, manageability and
sharing.

II. TYPES OF VIRTUALIZATION

2.1. Hardware virtualization

Hardware virtualization or platform virtualization
refers to the creation of a virtual machine that acts like
a real computer with an operating system. Software
executed on these virtual machines is separated from
the underlying hardware resources. For example, a
computer that is running Microsoft Windows may
host a virtual machine that looks like a computer with
the Ubuntu Linux operating system; Ubuntu-based
software can be run on the virtual machine.

In hardware virtualization, the host machine is the
actual machine on which the virtualization takes
place, and the guest machine is the virtual machine.
The words host and guest are used to distinguish the
software that runs on the physical machine from the
software that runs on the virtual machine. The
software or firmware that creates a virtual machine on
the host hardware is called a hypervisor or Virtual
Machine Manager.

Different types of hardware virtualization include:

1. Full virtualization: Almost complete simulation of
the actual hardware to allow software, which typically
consists of a guest operating system, to run
unmodified.

2. Partial virtualization: Some but not all the target
environment is simulated. Some guest programs,
therefore, may need modifications to run in this
virtual environment.

3. Para virtualization: A hardware environment is not
simulated; however, the guest programs are executed
in their own isolated domains, as if they are running
on a separate system. Guest programs need to be
specifically modified to run in this environment.

Hardware-assisted virtualization is a way of
improving the efficiency of hardware virtualization. It
involves employing specially designed CPUs and
hardware components that help improve the
performance of a guest environment.

Hardware virtualization is not the same as hardware
emulation. In hardware emulation, a piece of
hardware imitates another, while in hardware
virtualization; a hypervisor (a piece of software)
imitates a particular piece of computer hardware or

the entire computer. Furthermore, a hypervisor is not
the same as an emulator; both are computer programs
that imitate hardware, but their domain of use in
language differs.

2.2. Desktop Virtualization

Desktop virtualization is the concept of separating the
logical desktop from the physical machine. One form
of desktop virtualization, virtual desktop
infrastructure (VDI), can be thought as a more
advanced form of hardware virtualization. Rather than
interacting with a host computer directly via a
keyboard, mouse, and monitor, the user interacts with
the host computer using another desktop computer or
a mobile device by means of a network connection,
such as a LAN, Wireless LAN or even the Internet. In
addition, the host computer in this scenario becomes a
server computer capable of hosting multiple virtual
machines at the same time for multiple users.

• Software virtualization

• Storage virtualization

• Memory virtualization

III. VIRTUAL MACHINES

A virtual machine (VM) is a software implementation
of a machine (i.e. a computer) that executes programs
like a physical machine. Virtual machines are
separated into two major categories, based on their
use and degree of correspondence to any real
machine:

1. A system virtual machine provides a complete
system platform which supports the execution of a
complete operating system (OS). These usually
emulate an existing architecture, and are built with
either the purpose of providing a platform to run
programs where the real hardware is not available for
use (for example, executing software on otherwise
obsolete platforms), or of having multiple instances of
virtual machines lead to more efficient use of
computing resources, both in terms of energy
consumption and cost effectiveness (known as
hardware virtualization, the key to a cloud computing
environment), or both.

2. A process virtual machine (also, language virtual
machine) is designed to run a single program, which
means that it supports a single process. Such virtual
machines are closely suited to one or more
programming languages and built with the purpose of

International Journal of Trend in Scientific Research and Development, Volume 1(

IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

providing program portability and flexibility (amongst
other things). An essential characteristic of a virtual
machine is that the software running inside is limited
to the resources and abstractions provided by the
virtual machine - it cannot break out of its virtual
environment.

IV. PROBLEM DEFINITION AND DIRECTION
FOR PROPOSED SOLUTION

A discussion towards the RESOURCE
MANAGEMENT of VIRTUAL MACHINES
CLOUD and how to make resources more e
available to clients, is provided. The notion of JOB
SCHEDULING is addressed.

4.1. Deadline Aware Virtual Machine Scheduler

A novel approach to optimize job deadlines when run
in virtual machines by developing a deadline
algorithm that responds to job execution delays in real
time, and dynamically optimizes jobs to meet their
deadline obligations.

Performance Metrics

To access the performance of our scheduling
algorithm, the following metrics are de
system:

 System performance to measure total number of
jobs completed during a period of time.

 Deadline miss rate representing the number of
jobs missing their deadline, thus being terminated
by the scheduler.

 Utilization rate for the CPU and
measure how long each resource have been
active.

Questions to be answered

 How dynamic scheduling of workloads at the
machine level will work once the batch system
have scheduled a job to a particular node given
that job will be executed in a vi
container?

 What kind of scheduling technique could be used
to optimize multiple virtual machines running
HPC jobs?

 Which parameter of the job could be considered
as pivotal in scheduling policy; deadline
ratio or failure rate? Or both of them could be
part of the same scheduling technique?

 What would be the mix of executing job types on
the machine to increase resource utilization?

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN:
www.ijtsrd.com

providing program portability and flexibility (amongst
other things). An essential characteristic of a virtual

nside is limited
to the resources and abstractions provided by the

it cannot break out of its virtual

IV. PROBLEM DEFINITION AND DIRECTION

A discussion towards the RESOURCE
MANAGEMENT of VIRTUAL MACHINES in
CLOUD and how to make resources more efficiently

is provided. The notion of JOB

4.1. Deadline Aware Virtual Machine Scheduler

A novel approach to optimize job deadlines when run
loping a deadline-aware

algorithm that responds to job execution delays in real
time, and dynamically optimizes jobs to meet their

To access the performance of our scheduling
algorithm, the following metrics are defined in the

System performance to measure total number of
jobs completed during a period of time.
Deadline miss rate representing the number of
jobs missing their deadline, thus being terminated

Utilization rate for the CPU and memory to
measure how long each resource have been

How dynamic scheduling of workloads at the
machine level will work once the batch system
have scheduled a job to a particular node given
that job will be executed in a virtual machine

What kind of scheduling technique could be used
to optimize multiple virtual machines running

Which parameter of the job could be considered
as pivotal in scheduling policy; deadline-duration

h of them could be
part of the same scheduling technique?
What would be the mix of executing job types on
the machine to increase resource utilization?

4.2. Utility Based Job Scheduler

Cloud computing system is featured by its workload,
deadline and corresponding utility obtained by its
completion before deadline, which also are factors
considered in deriving an effective scheduling
algorithm. Utility is attained from completed jobs. So
amount of utility that cloud system obtained is defined
in terms of completion of jobs.

Figure 1.1: Job Scheduler [7]

4.3. Dynamic Virtual Machine Job Scheduler
To serve to diverse user communities with often
competing Quality of Service (QoS) requirements for
their jobs/virtual machines, some jobs being more
CPU or memory intensive than the others and vice
versa, requires a dynamic and intelligent resource
scheduling which is adaptive as the nature of
workloads at any given moment changes. QoSvaries
from different utility context such as its different for
EC2 user community.

X factor is a ratio of job I that is projected to miss its
current deadline and is determined by

Xi = (job duration remaining
duration remaining. It uses three approaches for
determining the X value.

Using a static threshold value

 Using a threshold value which adapts
according to the existing conditions

 Using cdf

4.4. New Metrics of Job Scheduling Of Virtual
Machines

In this paper, there are a new set of metrics, called
potential capacity (PC) and equilibrium capacity

), ISSN: 2456-6470

436

Utility Based Job Scheduler

Cloud computing system is featured by its workload,
esponding utility obtained by its

completion before deadline, which also are factors
considered in deriving an effective scheduling
algorithm. Utility is attained from completed jobs. So
amount of utility that cloud system obtained is defined

ompletion of jobs.

Figure 1.1: Job Scheduler [7]

Dynamic Virtual Machine Job Scheduler
To serve to diverse user communities with often
competing Quality of Service (QoS) requirements for
their jobs/virtual machines, some jobs being more

memory intensive than the others and vice
versa, requires a dynamic and intelligent resource
scheduling which is adaptive as the nature of
workloads at any given moment changes. QoSvaries
from different utility context such as its different for

X factor is a ratio of job I that is projected to miss its
current deadline and is determined by

Xi = (job duration remaining-time to deadline) / job
duration remaining. It uses three approaches for

Using a threshold value which adapts
according to the existing conditions

4.4. New Metrics of Job Scheduling Of Virtual

In this paper, there are a new set of metrics, called
potential capacity (PC) and equilibrium capacity

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470
www.ijtsrd.com

437
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

(EC), of resources that incorporate these dynamic,
elastic, and sharing aspects of co-located virtual
machines. Then show the mesh of this set of metrics
smoothly into traditional scheduling algorithms.

V. SCHEDULING

Scheduling mechanism is the most important
component of a computer system. Scheduling is the
strategy by which the system decides which task
should be executed at any given time. There is
difference between real-time scheduling and
multiprogramming timesharing scheduling. It is
because of the role of timing constraints in the
evaluation of the system performance.

5.1. Types of Scheduling

Three types of scheduler: Long-term, medium-term
and short-term.

5.1.1. Long-term Scheduling:

When memory is available, which task (job) needs to
be selected to be fetched and serviced as a process?
The issue here is memory residency. As long as the
process is active, it would be residing in the primary
memory.

Long-term schedule is about

 New
 Exited

Long-term scheduling dictates degree of
multiprogramming. If too high, system performance
drops. If too low, throughput would be low.

5.1.2. Medium-term Scheduling:

Which and when processes are to be suspended and
resumed?

Medium-term scheduling is concerned about

 Blocked – Suspended
 Ready – Suspended

It is concerned with memory management. It is vital
that it interacts with the dispatcher unit efficiently to
provide good system performance.

5.1.3. Short-term Scheduling (dispatching):

Which of the ready processes (in the CPU queue) is to
have CPU resources and for how long?

Figure 1.2: States of a Process

Dispatching is concerned about

 Running
 Ready
 Blocked

Short-term scheduling or dispatching is concerned
with the allocation of CPU to processes to meet some
pre-defined system performance objectives.

5.2. Cloud Scheduling

The main reason of using a Cloud system is to
improve the performance of large-scale application
programs, high scalability and fault tolerance.
Therefore it is essential to keep the cost of creating
and managing parallelism as low as possible.

As for scheduling in a Cloud system, there are three
goals to lower down the cost:

 Good processor utilization:

All processors have work in their queues at all times.
All processors, which have tasks assigned to them
from the same program finish execution at the same
time, thus the user gets the expected speedup.
Processors spend most of their time doing useful work
rather than coordination the division of work.

 Good synchronization effectiveness:

Tasks are scheduled in such a way that interacting
tasks across with fine-grained interaction should be
running at the same time.

 Low communication/memory-access cost:

Tasks are scheduled in such a way that
communication time, either message passing or
shared-memory latency is accounted for, and
minimized. Scheduling data structures should be
arranged so that they are no a source of contention.

5.3. Single Shared Ready Queue

It is a simple approach. A single global queue shared
by all the processors in the system. Whenever a
processor is available and the queue is not empty, the

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470
www.ijtsrd.com

438
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

processor will be scheduled with a new task. The
scheduling policies such as First Come First Serve
(FCFS) and Shortest Job First (SJF) can be easily
implemented. [9] It seems as if this approach may
yield good processor utilization. However, this
approach does not provide any mean to schedule fine-
grained interacting tasks to run at the same time.
Consider the following scenario: Task A already
scheduled for a processor, but it mush wait for
completion of Task B, which is still in the queue.
Even though Task A keeps the processor busy, all it
does is to wait. This approach also has potential high
communication/memory access cost, because this
global queue occupies a region of memory that can be
accessed by all the processors simultaneously.

5.4. Co-scheduling

In co-scheduling, all runable tasks of an application
are scheduled on different processors simultaneously.
Without coordinated scheduling, the processes
constituting parallel tasks may suffer communication
latencies because of processor thrashing. In recent
years, researchers have developed parallel scheduling
algorithms that can be loosely organized into three
main classes, according to the degree of coordination
between processors: explicit or static co-scheduling,
local scheduling, and implicit or dynamic co-
scheduling.

5.4.1. Explicit Co-scheduling

Explicit co-scheduling ensures that the scheduling of
communication jobs is coordinated by creating a static
global list of the order in which jobs should be
scheduled and then requiring a simultaneous context-
switch across all processors. This may be
accomplished statically by agreeing upon a global
schedule in advance or dynamically by having a
“master” local scheduler direct other schedulers by
communicating with them at each context switch.
However, this approach has quite a few drawbacks.
Since it requires identifying parallel tasks in the
application in advance, it complicates the
implementation. Furthermore, it interacts poorly with
interactive use and load imbalance.

5.4.2. Local Co-scheduling

Conversely, local scheduling allows each processor to
independently schedule its processes. Although
attractive due to its ease of construction, the
performance of fine-grain communicating jobs

degrades significantly because scheduling is not
coordinated across processor

5.4.3. Implicit Co-scheduling

An intermediate approach, implicit co-scheduling,
allows each of the local schedulers to make decisions
independently, but relies on local schedulers to take
the communication behavior of local processes into
account when making decisions. Local schedulers can
converge on co-scheduling behavior since each sees
similar or related communication behavior by local
processes that are part of parallel applications. There
are many forms of implicit co-scheduling developed
over the years.

5.4.4. D_EDF

Deadline Monotonic is fixed-priority scheduling
algorithm whereas EDF is dynamic-priority
algorithm. A fixed-priority scheduler assigns the same
priority to all instances of the same task, thus the
priority of each task is fixed with respect to other
tasks. However, a dynamic-priority scheduler may
assign different priorities to different instances of the
same task, thus the priority of each task may change
with respect to other tasks as new task instances arrive
and complete.

REFERENCES

[1] P. A. Laplante, Real-Time Systems Design and
Analysis, 3rd ed., IEEE Press, 2004.

[2] G. C. Buttazzo, Hard Real-Time Computing
Systems: Predictable Scheduling Algorithms and
Applications, 3rd ed., Springer, 2005.

[3] R. L. Panigrahi and M .K. Senapaty, “Real Time
System for Software Engineering: An Overview”,
Global Journal for Research Analysis, Vol. 3, Issue 1,
pp. 25-27, January 2014.

[4] J. W. S. Liu, Real-Time Systems, Prentice Hall,
2000.

[5] A. Silberschatz, P. B. Galvin and G. Gagne,
Operating System Concepts, 8th ed., Wiley, 2012.

[6] R. J. Creasy, “The Origin of the VM/370 Time-
Sharing System,” IBMJ. Res. Dev., vol. 25, no. 5, pp.
483–490, 1981.

[7] G. J. Popek and R. P. Goldberg, “Formal
Requirements for Virtualizable

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470
www.ijtsrd.com

439
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

Third Generation Architectures,” Commun.ACM, vol.
17, no. 7, pp.412–421, 1974.

[8] Y. Wang, J. Zhang, L. Shang, X. Long, and H. Jin,
“Research of Realtime Task in Xen Virtualization
Environment,” in ICCAE’10, 2010.

[9] T. Gaska, B. Werner, and D. Flagg, “Applying
Virtualization to Avionics Systems - The Integration
Challenges,” in DASC’10, 2010.

[10] D. Patnaik, A. Bijlani, and V. Singh, “Towards
High-Availability for IP Telephony Using Virtual
Machines,” in IMSAA’10, 2010.

[11] D. Patnaik, A. S. Krishnakumar, P. Krishnan, N.
Singh, and S. Yajnik, “Performance Implications of
Hosting Enterprise Telephony Applications on
Virtualized Multi-Core Platforms,” in IPTComm’09,
2009.

[12] P. Goyal, X. Guo, and H. M. Vin, “A
Hierarchical CPU Scheduler for Multimedia
Operating Systems,” in OSDI’96, 1996.

[13] Z. Deng and J. W.-S.Liu, “Scheduling Real-time
Applications in an Open Environment,” in RTSS’97,
1997.

[14] J. Regehr and J. A. Stankovic, “HLS: A
Framework for Composing Soft

Real-Time Schedulers,” in RTSS’01, 2001.

[15] S. Kato, R. Rajkumar, and Y. Ishikawa, “A
Loadable Real-Time Scheduler S ite for Multicore
Platforms,” Technical Report CMUECE- TR09-12,
2009.[Online]. Available: http://www.contrib.andrew.
cmu.edu/»shinpei/papers/techrep09.pdf

