

A Review Paper on Study of Progressive Damage of Composite Structure Under Tri Axial Loading by Referencing Macro-Mechanical Based Failure Theories

Mr. Rahul B Gunale

Assistant Professor, Mechanical Department, ICOER, JSPM, Wagholi, Pune, Maharashtra, India

ABSTRACT

Paper reviewed laminate failure occurred under tri axial loadings by using macromechanical based theories applied under static loading failure conditions. The proposed failure model by various authors is an extension of the strain energy failure theory for tri axial loading conditions. The paper summarizes laminate failure which includes initial failure, progressive damage, and final failure different laminate ply and material configurations. The paper also reviewed the structure failure due to stress concentration effects arrive due to edging effects. The aim of paper is to present failure of complex composite laminate by various means due to complex loading conditions much similar to actual operational loadings.

Keywords: Composite laminate, failure, Strain energy model, progressive damage etc

1. INTRODUCTION

Composite material is combination of two phases designed for better engineering properties. Composite materials used in design of structures such as mud and straw, now days they are continue to be used in concrete. Fiber is stiff member which is embedded in matrix and exhibits more load sustaining capacity. Load on structure received by matrix and transferred to fiber. Fibers are oriented in different directions to enable to achieve desired property configuration and strength. Fiber can be woven braided or separately placed apart. Fiber may be continuous or discontinuous and decision will be taken based on sort of property configuration needed. Matrix may consist of polymer, ceramics or metal. Fiber and matrix forms

the lamina structure which would have definite width, length and thickness, when several such laminas placed one above the other (The lamina fiber either may have same or different orientation) the resultant structure would be called as laminate. The property configuration of lamina and laminate is different from each other, and despite made of same material the ultimate load sustaining capacity and loading behavior is not same. The failure initiates from lamina and reach to laminate which leads ultimate structure failure.

The broad application of fiber-reinforced composite laminates has led to a large amount of research into their progressive damage and failure, and many authors have devoted their work in similar context. There are numerous progressive and failure models that predict mechanical response of structure which includes all loading configurations, boundary conditions, lay-ups, and thicknesses of composite laminates. Categorizing the existing failure theories is expected to highlight with regards to composite laminate progressive damage and failure where existing literature may be sparse. Existing failure criteria are classified as micromechanics or macro mechanics based, the structure failure analysed at lamina constituent recognized level is micromechanical approach where failure analysis at lamina level recognised as macro mechanical approach.

The failure analysis of composite structure is an important aspect to understand to enhance its utility and scope both. While trying in similar context the

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

failure theories (Micromechanical based) are discussed throughout paper which project light on nature of loading, factors responsible in failure, and lamina behaviour before occurrence of ultimate failure, and thus knowledge of such few responsible parameters would enables the technical fellow to design robust structure to serve said application in desired manner.

2. Authors and failure investigation work based on Micromechanical failure theories:

	Macro mechanical model, Uniaxial loading	
Sr.	Author & Year	Research conclusion
No.		
1	Stowell & Liu	Extends maximum stress theory to accounts effects of constituents, effect of
	(1961)	tensile strength of fiber and effect of transverse strength of matrix.
2	Kelly & Davies	Extends Stowell and Liu theory accounts the interaction between fiber and
	(1965)	
3	Prager (1969)	Extends the Kelly & Davies theory accounting interaction between transverse
1	Nahag (1096)	And shear failure mode of matrix
4	Ivalias (1960)	but of stress components due to poisons effect
5	Lane & Robinson	Vield occurs when critical shear stress along longitudinal plane or plane inclined
5	(1971)	at an angle 45 degrees to material yield stress
6	Hills Theory	States anisotropic behavior of material, the criterion only predicts failure and not
Ŭ	(Extension to Von	failure mode.
	Mises Theory or	JISRD MAN
	Distortional Energy	
	Theory)	📽 🞳 International Journal 🍯 🏹 🛛 🖬 👘
7	Azzi & Tsai (1965)	Lamina is transversely isotropic
8	Norris (1962)	General representation of Von Mises theory
9	Yamada & Sun	Theory predicts the laminate failure
10	Griffith Buldwin	Defines composite failure based on distortion energy theory, author proved
	(1962)	distortional energy stored in structure is difference between total strain energy
		and volumetric strain energy
11	Hoffman (1967)	Find the failure of transversely isotropic composite lamina
12	Puck & Sehneider	Predicts failure of constituents. The author proposed possible modes of
	(1969)	composite failure as, fiber failure by breaking, matrix yielding, and failure at
		The theory is not explicitly for explicit directional lowington
12	Sandhy (1074)	A accurate non-linear helpsvice of leminate and negatile modes of failures.
13	Sananu (1974)	Accounts non-linear behavior of faminate and possible modes of failures.
14	K_{oppov} (1966)	Generalized failure criterion for amsotropic materials to predict the failure.
15	Giang & Tensyon	Developed a model depicts surface failure
15	(1989)	Developed a model depicts surface failure
16	Ashkenazi (1965)	Author proved normal strength is twice the shear. Further investigations
10	(1) (0)	determined interaction coefficient between fiber and matrix for 45 degree fiber
17	Hashim & Rotem	Proposed several equation describing fiber and matrix failure
	(1973)	
18	Hashin (1980)	Distinguished tensile and compressive failure for fiber and matrix
		Uniaxial Loading on Angle ply laminates
19	Blewer & Legace (1988)	Delamination of [+ 15/ -15] laminate under uniaxial tension
20	Hung Chang (1996)	Predict progressive damage as a function of stress, the results are applicable to
		45 degrees angle ply laminates.
21	Hwang & Sun	Performed 3D Finite Element Analysis and predicts modes of fiber failure,

	(1989)	delamination, matrix cracking, first and last ply failure, and non-linear behavior
		of laminate. Fiber with low angle of orientation, difference between first and last
		ply failure is high.
22	Kam & Lai (1999)	Predict first ply failure for out of ply transverse loading by acoustic emission
		techniques
23	Hwang & Chang	Develop model for progressive damage prediction.
	(1996)	
24	Pal & Ray (2002)	Progressive failure of laminate for out of ply transverse loading. Failure of each
		lamina evaluated till ultimate laminate failure. Failure of angle ply laminate
		evaluated using stress theory, strain theory etc.
25	Reddy & Pandey	Developed first order shear theory to predict first ply failure of laminate.
	(1987)	
26	Shahid & Chang	Laminate progressive damage under tensile loading. Stress strain curve plotted
	(1995)	for angle ply laminates with fiber orientation 60 degrees subjected to uniaxial
		tensile load. Post initial failure is due to ply delamination.
27	Yeh Kim (1994)	Investigate effect of component interaction towards postpone of failure
28	Yeh (2003)	Experimental data from compression, tension and torsion used to determine
		model parameters, the model used to find axis stresses for angle ply laminate.
		The criterion suggested by author called as, "Quadratic Surface Criterion"
29	Yamada & Sun	Predict failure strength of angle ply laminates subjected to uniaxial load.
	(1978)	
30	Al-Khalil (1990)	Predict failure of [+55/-55] laminate made of glass/epoxy subjected to uniaxial
	a	loading
		Uniaxial Loading on Cross Ply Laminates
31	Hung chang (1996)	Plotted load vs deflection curve for cross ply laminate subjected to compressive
		load and same is verified with experimental results. The laminate failure load
		was predicted 5% more than experimental failure load.
32	Joo, Hong, Kim	Three dimensional FEA method is used to model stress filed and thus to predict
	(2001)	effects such as lamina damage by micro cracks, lamina damage by means the
	N Y	progressive failure etc.
	N N	The laminate stacking sequence used was, $[90_5/0]_s \& [0/90_5]_s$. The model
	(Y	predicts ultimate failure correctly for $[90_5/0]_s$ under uniaxial tensile load, where
		overestimates the failure load for $[0/90_5]_s$.
33	Hybrechts (2002)	Used Isai-Wu theory to predict laminate failure which precipitates value for
		failure load 20% less than actual failure strength of laminate obtained
2.1		experimentally.
34	Kum & Jam (1995)	Used FEA model to predict first ply failure strength of thick laminate by using
		I sai-wu criterion, the results obtained shown 20% error with respect to
25		experimental findings.
35	Kum & Jam (1996)	Predicted first ply failure strength by using I sai-Wu, I sai-Hill criterion for cross
26	L' (1002)	ply laminates subjected to out of plane transverse loading.
36	Liu (1993)	Investigates matrix failure by means of crack propagation and delamination
		growth. The further part of work includes, plotting of stress-strain curve for
27	$D_{0}1 \ \theta_{T} D_{0} = (2002)$	Concentrated out of plane load.
20	$\frac{\text{rai} \propto \text{Kay} (2002)}{\text{Dreaty} (2001)}$	Light FEA method conjunction with Tasi Lill meriline transverse load.
30	Prasty (2001)	Used FEA method conjunction with I sai-Hill, maximum stress theory to predict
20		
39	Doddy V- Domain	Und dimailan avanamina antol intractions of did by Unit P. Devi events
	Reddy & Pandey	Had similar experimental investigation as did by Pal & Ray, except extended
40	Reddy & Pandey (1987)	Had similar experimental investigation as did by Pal & Ray, except extended work for out of ply transverse tensile load.
40	Reddy & Pandey (1987) Shahid & Chang	 Had similar experimental investigation as did by Pal & Ray, except extended work for out of ply transverse tensile load. Plotted stress-strain curve for [0/90] laminate for transverse tensile load, results were compared with 10 degrees off axis test.

41	Sleight (1997)	Develop progressive failure analysis methodology to predict laminate failure and
		nonlinear response.
		[0/90] _s specimen under test consideration, made up of glass/epoxy subjected to
		uniaxial load. The free edge effect also considered in laminate failure
		Uniaxial Loading on Quasi Isotropic Laminates
42	Hung & Chang	[45/90/-45/90 ₂] _s laminate subjected to uniaxial compression and stress-strain
	(1996)	curve was plotted same was also compared with experimental results obtained
		under similar loadings.
43	Kim & Soni (1984)	Predicted delamination for $[0/45/-45/90]_s$ laminate subjected to uniaxial
		compression and tension one by one. The work of author based on self-
		developed "Inter laminar normal stress failure criterion".
		The results obtained were compared with experimental test which shows 5 to
		10% marginal difference.
44	Shahid & Chang	Predict progressive damage model based on Hashin criterion for laminate
	(1995)	$[45/90/-45/90/45/90/-45/90]_s$ subjected to uniaxial tensile loading
45	Sleight (1997)	Predicted failure for laminate $[+45/-45/0_2/+45/-45/0_2/+45/-45/0/90]_s$ subjected to
4.6	D 11 0 D 1	
46	Reddy & Pandey	Predicted first ply failure strength $[45/-45/90/0/45/90/-45/90]_s \& [45/0/90/45/0/-$
	(1987)	45/90] _s for in plane transverse tensile loading by using FEA method conjunction
47	D 11 0 D 1	With maximum stress and strain criterion
4/	(1087) Ready & Pandey	Predicted failure of quasi isotropic faminates, $[90/45/-45/0]_s$ made of AS ₄ /3501-
	(1987), Prusty (2001)	loading by using maximum strong strong. Tasi Wu and Hill aritarian
18	(2001) Christoforoa (1084)	Tostad specimen for internal pressure
40	CIIIIstololoa (1984)	Uniovial Loading on Anisotropia Laminetes
40	Prower & Logaco	Dradiet delemination of leminates $[1,15,0]$ & $[0,1,15]$ for uniovial tension
49	(1088)	Tredict defainination of familiates $[\underline{\tau}_{1} J_{n} / \delta_{n}]_{s} \approx [\delta_{n} / \underline{\tau}_{1} J_{n}]_{s}$ for unraxial tension
50	Hung & Chang	Predict experimental failure strength for laminate $[(60/90/-60/90)_2] & [(30/90/-$
50	(1996)	$30/90_{2}$ subjected to uniaxial compression
51	Kim & Soni (1984)	Studied delamination of $[+30./90.]$, subjected to uniaxial tensile load
52	Shahid & Chang	Studied progressive damage in laminates $[+30/90_{-}]$, $[+60/90_{-}]$, $[+60_{2}/90_{-}]$.
02	(1995)	$[60/90/-60/90]_{2}$ subjected to uniaxial tensile loading by means of Hashan failure
		criterion
53	Huvbrecht's (2002)	Studied first ply failure of anisotropic laminate by using maximum stress, strain
		and Tsai-Wu criterion.
		Bi axial loadings
54	Eckold (1998)	Design the laminate which would not undergo micro cracking failure and creep
		rupture, the maximum allowable strain maintained below design strain, the strain
		was observed to be a function of modulus which was further function of fiber
		orientation.
55	Edge (1998)	Develop method consider interaction between shear-tension during matrix
		failure, shear-compression in fiber failure. The initial failure was function of
		transverse tension and ultimate failure as longitudinal failure.
56	Mecartney (1998)	Predicts stress at which transverse crack induced in laminate under bi-axial
		loading, ply has one way orientation, parameters associated to crack were
		elongation and macroscopic properties of lamina.
57	Hart-Smith (1998)	Studied limitations of maximum strain theory
58	Hart-Smith (1998)	Generalize shear stress criterion and compare the result with experimental \tilde{a}
		tindings.
59	Hinton (2004)	Measured longitudinal modulus, longitudinal tensile failure strength, and
		longitudinal compressive failure strength for 45 degrees lamina.

60	Sun & Tao (1998)	Obtained failure envelopes for unidirectional and multidirectional laminate using linear laminate theory. The fiber break leads longitudinal modulus equals to
		zero, the matrix failure leads to shear and transverse modulus equals to zero. The
		degradation modulus is the function of crack density.
61	Zinoviev (1998)	Studied deformation and failure when load increment was given until ply attains maximum stress.
62	Boyelti (2004)	Progressive failure is function of maximum strain load carried by ply by the time of failure. The moment first ply fails load transferred to remaining ply and
(2)		process continues until occurrence of laminate failure.
63	(2004)	studied nonlinear 3D failure model.
		Bi-Axial loading on Unidirectional Laminate
64	Theocaris (1983)	Use biaxial hydrostatic loading to evaluate tonsorial polynomial criterion
65	Theocaris (1983)	Predicted Tsai-Wu criterion of failure for anisotropic material under hydrostatics load
66	Choo & Hull (1983)	Predicted failure of unidirectional composite laminate made of glass fiber and polymer resign, subjected to bi-axial tensile compressive load, added, internal
		pressure superimposed with applied loadings, the Mohr's Circle method was used in the stress analysis and associated failure prediction.
67	Swanson (1988)	Obtained the experimental data for AS4/55A Carbon epoxy laminate subjected
		to torsional shear and tension, the Tsai-Wu failure theory was used in failure
	8	prediction, the conclusion of work was, value of shear stress increased with
	2	increase in compressive stress and value of stress, strain decreases at laminate
	G .	ultimate failure. National Journal
68	Daniel (2009)	Considered unidirectional laminate subjected to multi axial state of stress. By
		using Tsai Wu theory author studied interlaminate failure of laminate by means
		of Inter laminar stresses combined with normal stresses. Author also studied first
	N T	ply and last ply failure of laminate. The laminate material was AS4/3501-6
	27	carbon/epoxy. Development
69	Hutter (1974)	Studied the failure of filament tubes, made of E glass/AY 556, subjected to
	N.	combined loading effect of torsion, tension and compression.
70	Schelling & Aoki	Studied the failure of axially wound tubes made of material T300914C
	(1992)	carbon/epoxy subjected to combine loading effect of torsion, tension and
		compression.
71	Al Khalil (1996)	Studied the failure laminate made from material E glass/AY 750 subjected to
		internal pressure and circumferential wind.
70	G 1 (10 7 0)	Bi-Axial loading on Angle Ply Laminates
12	Soden (1978)	Analyze the failure of tubular specimen with laminate configuration $[+35/-35]$ &
		[+55 & -55], made of glass polymer, subjected to blaxial loading. Authors
		leaded to conclusion; laminate is series of orthotropic ply, and laminate is
72	Energy (1070)	nomogeneous structure.
/3	Francis (1979)	Studied the first ply failure of tubular angle ply specimen made of material $T_{300/1034}$ by suing maximum strain theory
74	Soden (1989)	Predicted fracture strength of thin walled tubes subjected to biaxial loads, which
/ -	500cm (1909)	is combination of axial compression/tension and internal pressure. The laminate
		under consideration was [+55/-55] and made of material F glass fiber/epoxy
		Author also predicted first and ultimate nlv failure strength of laminate
75	Gargiulo (1996)	Predicted strength of filament wound carbon-fiber epoxy thin walled tubes under
		biaxial loadings. The laminate fiber orientations were 35, 55 and 75 degrees.
		CLT (Classical Lamination Theory) & Tsai-Hill criterion used to predict state of
		stress in each ply and their ultimate impact on laminate failure.

76	Dong Mistry (1998)	Predicted strength of filament used in marine and offshore industries which was
		then subjected to loading combination such as pressure and axial compression,
		author used Tsai-Wu failure theory to predict first and last ply failure strength of
		laminate. The fiber orientation of laminate was [+55/-55].
77	Hu (1998)	Study the tube macroscopic properties by using CLT and 3D FEA model, the
		laminate configuration used was [+55/-55] made of glass epoxy, maximum
		stress theory was used to predict ply failure strength
78	L in Hu (2002)	Studied non-linear behavior of laminate for in plane shear loading and stresses
/0	Liii 110 (2002)	induced Author used Tsai Wu theory which implemented in ABOUS and
		FORTAN code The lominate material was a Class/opeyy
70	Lin Tani (1009) P	Studied next initial failure leminates described by many degraded on brittle
/9	Edge (1008)	studied post initial failure failure
80	Lige (1996)	Blotted stress strein surve for $[\pm 45/45]$ laminate made of a glass/MV 750.
80	(1005) (1995) & Kelu	anowy. The lowingte was subjected to loading combination of evial stress and
	(1995)	boon stross
		Di Avial Loading on Cross Dhy Lominatos
Q1	$\mathbf{Francis}(1070)$	Dradiated failure of areas ply laminate mode of material T200/1024 analytic
01	Francis (1979)	predicted failure of cross-piy failing made of material, 1500/1054 graphite
		epoxy by using maximum stress and strain theory; results obtained were
		compared with experimental results.
00	G (1000)	BI Axial Loading on Quasi-Isotropic Laminates
82	Guess (1980)	Predicted failure stresses for [30/-30/90] laminate subjected to bi-axial loadings.
0.2		Authors used maximum stress theory and Nooris criterion in his investigation.
83	Soni (1983)	Author plotted failure envelope for [0/90/+45/-45] laminate made of 1300/5208
	2	graphite/epoxy, and subjected to longitudinal and transverse loading effects, the
		results obtained were also compared with experimental results.
84	Ganesh & Naik	Predicted first ply failure strength of laminate $[0/90/+45/-45]_s$, made of materials
	(1993)	1300/5208 graphite epoxy, AS/3501 graphite epoxy, B (4)/5505 boron epoxy,
	2-	Kevlar 4a/epoxy. CLT was used to find stress filed, Tsai-Wu theory was used to
		predict failure of each ply. The failure plots were showing variation with respect
	N N	to change in fiber orientation. Author observed all ply fails simultaneously for
0.7		biaxial tensile or compressive loadings.
85	Shahid & Chang	Studied progressive damage of laminate under tension, compression and shear
	(1995)	individually and combined. The laminate configuration under consideration was
		$[90/+45/-45/0]_s$. The failure of laminate under biaxial loading remains
0.6		questionable.
86	Swanson (1988)	Studied failure of quasi isotropic carbon epoxy tubular specimen subjected to
		internal pressure and axial force. The laminate under considerations were
		$[90/+45/-45/0]_s$. Author found considerable difference between first and last ply
		failure strength of laminate.
87	Colvin & Swanson	Laminate of material IM//8551-7 analyzed for transverse tension, compression
	(1990)	and in plane shear loading. Laminate compressive strength was found high than
		tensions, author also predicted laminate stiffness from ply properties.
88	Daniel (2007)	Author studied behavior and failure of laminate $[0/+45/-45/90]$ & $[+30/-30/90]$,
		made of AS4/3501-6-carbon epoxy laminate subjected to biaxial shear and
		normal loading, author used maximum stress and maximum strain theories
		approach to investigate his work.
89	Swanson (1988)	Plotted stress-strain curve for laminate [90/+45/-45/0], made of AS4/3501-6,
		which was subjected to pressure and axial loading effects.
		Bi Axial Loading on Anisotropic Laminate
90	Kruss & Schelling	Studied the laminate failure for configuration $[90/+30/-30/90]_s$, made of material
	(1969), Hutter	E-glass/L Y556 epoxy, the tubular structure during investigation was subjected
	(1974), & Forster	to loading combination such as, pressure and axial load, torsion and axial load

	(1970)	etc.
91	Swanson (1988)	Non quasi isotropic and anisotropic behavior of laminate is due to varying
		thickness of plies
		Tri-axial loading
92	Hinton (2007)	Analyzed tri-axial loading effect which was combination of hydrostatic load,
		tensile load and compressive load on unidirectional and multidirectional
		laminates.
		Author also analyzed loading effect which was combination of hydrostatic load,
		tensile load, compressive load and torsional load on unidirectional and
		multidirectional laminate.
	H	ydrostatic loading and laminate compressive behavior
93	Weaver & Williams	Failure strength of laminate increases with increase in hydrostatic pressure, and
	(1975)	strength of material doesn't vary according to material modulus.
		MILLON
		The fiber epoxy composites subjected to compression under hydrostatic pressure
		leads fiber longitudinal splitting due to tensile fracturing, the fiber kinking
		occurs at high pressure leading further fiber fracture along with adjacent fiber.
94	Parrg & Wronksi	Failure initiation in uniaxial CFRP under hydrostatic pressure and longitudinal
	(1982)	compression leads further longitudinal fiber splitting prior to kinking. For high
	B	pressure failure of structure more because of kinking.
	9	The pressure subjects monortioned relationship with in plane sheer which also
	8	bring structure failure by many shear grack induced when load exceeds the
	2	vield limit
	0	of Trend in Scientific 5 2 0
	93	The kinking occurs at pressure 150 MPa
95	Wronski & Parry	Performed test on S-glass epoxy resin matrix subjected to compressive load and
	(1982)	hydrostatic pressure, it has observed that, compressive strength increases with
		pressure, kinking occurred at high pressure, kink band width is affected by
		pressure, shear strength also increases with pressure, compressive failure is
	Y Y	taken place by means of matrix yielding.
	V	B
	· · · · · · · · · · · · · · · · · · ·	It was further observed that, result obtained in the case of glass reinforced
		polymer do not matches with carbon fiber reinforced composite polymer
96	Sigley (1992)	Axial compressive failure occurred in glass fiber reinforced polymer under
		superimposed pressure further yields conclusion such as, hydrostatic pressure is
		directly proportional to compressive stress occurred by the time of failure.
97	Sigley (1992)	Failure of glass fiber was by kinking throughout range of hydrostatic pressure.
		Failure by compression involve matrix shear. A group of fibers together as
		bundle in glass/polyester and glass/epoxide, the mode of failure observed was
	D1 0 D (1005)	longitudinal splitting and bundle buckling.
98	Rhee & Pae (1995)	Compression test on unidirectional carbon fiber epoxy 0 degree laminate
		superimposed with hydrostatic pressure and results are plotted in the form of
		stress-strain curve, it was further found from curve, compressive modulus,
		modulus ratio of compressive strength to fracture strength, fracture strain etc.
		Stiffnorg found increases with increases in processes high processes import
		non linearity and leading ply delemination and arealy opening. I an aitydinal
		compressive modulus exhibits proportioned relationship with pressure
00	Wronski & Dame	S-glass & enous resin matrix subjected to compressive load and hydrostatic
27	(1982)	pressure yields observations such as compressive strength is directly
1		Pressure fields observations such as, compressive suchgains another

proportional to hydrostatic pressure, kink band formation occurr	ed at high
pressure, shear strength also exhibits proportioned relationship with	th pressure,
failure by compression is mean by matrix yielding.	-
100 Sigley (1982) Axial compressive stress superimposed with hydrostatic pressure,	kink band
formation analyzed and evaluated in fiber bundle rather in sing	le fiber of
glass/polyester, glass/epoxide. The kink band formation results u	timately in
longitudinal fiber splitting and fiber buckling.	
101 Rhee & Pae (1995) Unidirectional carbon fiber/enoxy matrix laminated composites s	ubjected to
nure hydro pressure vields observation such as stiffness enhances w	ith increase
in pressure. Highest pressure causes delamination crack opening. I	ongitudinal
compressive modulus is directly proportional to pressure Fractu	oligitudinal
strain is directly proportional to bydro pressure.	c sucss &
102 Phas & Pas (1005) Eailure of composite is combination of fiber buckling delemin	ation analy
102 Rifee & Pae (1995) Failure of composite is combination of fiber buckling, defailing	ation crack
opening spin, crack opening by pry separation, and kinking etc.	
Hydro pressure decreases with occurrence of micro buckling, k	inking and
resulted in high laminate strength.	1 1 1 1
103 Lankford (1997) Test on fiber-reinforced polymer matrix composite when subjected to	hydro load
and uniaxial compression, the stress-strain curve plotted for	0 degree
unidirectional composite.	
104 Rhee & Pae (1995) 90 Degree unidirectional E-glass/epoxy laminates subjected to com	bination of
hydro pressure and compression, the observations found can be	e noted as,
strength, elastic modulus and ductility are proportioned with applied p	pressure.
15 Parry & Wronksi Hydrostatic pressure on 0/45/90 degree laminate leading axial s	plitting but
(1989) damage was found suppress for high pressure.	
A = or Frend in Scientific = 5 A	10 A
Shear failure occurred in all laminas at a time which are oriented at	45 degrees.
Failure in lamina oriented at 0 degree takes place virtue of kinking	. Failure in
lamina oriented 90 degree takes place due to shear occurred at 45 deg	ree plane.
106 Rhee (2003) The behavior of $[0/90]_{16s}$ & $[0/45/-45/90]_{8s}$ cross ply and quartering	si isotropic
laminates leads to following conclusion,	
V 2 100N. 2400-0470	
Delamination at multiple sites propagated along length of specir	nen at low
pressure. Hydrostatic pressure has an impact on compressive	failure of
laminates, shear buckling & splitting etc.	
Tensile behavior of laminates under hydrostatic pressure	
107 Parry & Wronksi Carbon fiber reinforced composites subjected to tension and hydrosta	tic pressure
(1989) leading failure is due to shear crack and broken fiber.	
Tensile failure strength inversely proportional to hydro pressure.	Transverse
cracking decreases with increase in hydro pressure. Failure streng	th no more
exhibits proportioned relationship with applied pressure. For appli	ed pressure
150 MPa laminate shows nonlinear behavior & more transvers	se cracking
observed.	Ũ
108 Sigely (1991) Glass polymer composite subjected to 300 MPa induces maximum	m principal
stress, and magnitude of stress decreases with increase in pressure.	1 1
Hydro pressure and tension leading fiber pull out crack becomes	shorter. no
transition in mechanical behavior. Failure strength increases with	decrease in
pressure.	
109 Zinoviev (2001) Longitudinal moduli is pressure independent, where longitudi	nal tensile
strength depends on hydro pressure and exhibits inverse relations	nip. Failure

		mode less dispersed through composite specimen for high hydrostatic pressure.
	Shea	r behavior of laminates under low hydrostatic pressure
110	Shin & Pae (1992)	Author studied Torsional shear stress-strain behavior of graphite epoxy
		composite. The stress strain curve nature found change with increase in
		hydrostatic pressure, curve shows nonlinear behavior with increase in pressure,
		fracture strength and strain exhibits proportioned relationship with pressure.
		Torsional shear modulus which is combination of in plane and out of plane shear
		plane modulus found increases with increase in pressure.
		Surface flaws tend to propagate for atmospheric pressure, at high pressure flaws
		leads to close partially and reduce stress concentration. Premature fracture
		occurred at 2 bar pressure.
111	Shin & Pae (1992)	Author studied mechanical response of shear load considering fiber orientation.
		Author also leaded to conclusion, shear strength, shear modulus, yield strength
		and fracture strength are pressure dependent. Author further observed that, shear
		properties found enhanced with increase in pressure which become further
		function of fiber orientation and also exhibits the proportioned relationship with
		fiber orientation.
	E E	
	B	Rate of change of shear properties observed for 45 degree laminates, it found
	a	less in 0 degree laminates and least for 90 degree laminates.
	G	The mode of laminete failure also noted unique in the asso of every leminete.
	8	having unique fiber orientation, for example, the laminate with fiber oriented in
		1 aving unique noer orientation, for example, the familiate with noer oriented in 00 degrees failed due to fiber matrix debonding
112	Pae (1006)	Author studied behavior of lamina with fiber orientations 0, 45, -45 and 90.
	1 ac (1990)	degrees for loading combination of shear compression and hydrostatic pressure
	2 -	The lamina behavior noted same for 45 and -45 degree lamina
113	Hine (2005)	Author studied effect of tension and transverse compression on unidirectional
		composite laminates, the pressure marinated at 850 MPa. It was observed that
	Y Y	longitudinal tensile modulus and tensile strength found increase with increase in
	V V	applied pressure, simultaneously tensile strength drops down due to local
		damage which further tends to decrease fiber strength too. Failure mode changes
		from longitudinal splitting to transverse break. Transverse compressive strength
		and modulus increases with increase in applied pressure. In plane tension
		behavior found exactly same as transverse compressive behavior.
		Tri-axial loading
114	Theocaris (1983)	Author developed failure model for elliptical paraboloid failure surface, the
		effect of out of plane stress vs hydro pressure added further in study. Author
		observed that, tensile strength in out of plane transverse direction of
		polycarbonate decreases with increase in pressure. The tensile strength found
		proportioned with applied pressure.
115	Boehler & Raclin	Author studied behavior of unidirectional composite laminate made of glass
	(1985)	fiber and fibers oriented from 0 to 90 degrees, subjected to pressure 0 to 75
		MPa.
		Author took help of I sai-Wu criterion to predict laminate behavior as mentioned
		above, which turther subjected to effect of compression and hydrostatic
116	7 1 (2004 0	pressure. I sai-Wu criterions underestimate compressive strength of laminates.
116	2007 (2004 &	Develop model for compliance matrix in strain energy based model for plane
1	2007)	stress condition, compliance matrix formulate strain energy in three dimensional

		stresses.
117	Sandhu (1974)	Author drawn piecewise spline interpolation stress-strain curve for uniaxial
		loading which used further to determine tangent moduli. Tangent moduli also
		can find out from stress-strain curve drawn for tension-compression loading,
		loading also can be in plane shear, out of plane shear etc.
118	Zand (2004 &	Author states after his experimental investigation, strain energy induced due to
	2007)	interaction between transverse and longitudinal direction is separate energy
		term.
119	Zinovlev (2001)	Author states after his investigation, hydrostatic pressure influence resistance of
		material to fiber failure. Fiber fails in tension when longitudinal strain energy
		exceeds strain energy at failure of lamina under uniaxial tension. Area under
		tensile fiber failure, longitudinal strain energy and stress-strain curve becomes
		equal.
120	Hine (2005)	Author investigates longitudinal tension and compression loading effect on
		unidirectional composites which further superimposed with hydrostatic pressure
		of intensity 850 MPa.
121	Hine (2005)	Author conclude, longitudinal tensile modulus increases slightly and
		longitudinal strength decreases slightly with increase in hydrostatic pressure.
		Longitudinal compressive strength increases with increase in hydro pressure.
	F	
	6	Hydrostatic pressure enhances fiber potential by enhancing effect of individual
	9	flaws or decreasing tensile strength of fiber material itself.
	8	
	2	If matrix are significantly weak than fiber, matrix cracking occurs at hydrostatic
		tensile stress for below the value having significant effect on fiber failure.
	G	Tensile hydrostatic loading debonding fiber-matrix interface at stress even lower
	20	than matrix cracking. Load transfer from matrix to fiber would have negligible
	2-	effect on fiber other than longitudinal direction and so the effect already taken in
	2 -	to account in longitudinal stress.
122	Sandhu (1974) &	Suggested extension to strain energy model to predict orthotropic laminate
	Butalia (1998)	failure.
		3 • ISSN: 2456-6470 • 🖉 💭
	V	Author validates proposed model by performing tests on multidirectional
		laminates subjected to uniaxial loading, as well, unidirectional and
		multidirectional laminate subjected to bi-axial loadings. The author could not
		extend his work for tri-axial loading as availability of experimental results for
		validation are not enough and accurate.
123	Pipes & Pagano	Author concludes, stress concentration at free edge of plies leading ply
	(1972)	delamination. Load transfer from damaged lamina to undamaged lamina is
	()	important to avoid catastrophic failure of entire structure but effect leads to
		change mechanical behavior of structure meanwhile.
124	Zinoviev (2001)	Author studied, effect of shear and hydrostatic pressure on unidirectional
		laminate longitudinal tensile strength, laminate was made of T 300/PR 319
		carbon epoxy, whose fibers are oriented in 90 degrees.
125	Shin & Pae (2001)	Cylinder subjected to 600 MPa pressure, also applied with torsion at constant
120		rate, author concluded that primary failure mode is observed as matrix shear
		failure and fiber-matrix debonding
126	Zinoviev (2001)	Cylinder made of material S-glass/enoxy subjected to hydrostatic pressure and
120		longitudinal tension compression lead to fail at low pressure and mode of
		failure observed circumferential solititing and senaration. At high pressure fiber
		runtures perpendicular to fiber length
127	Wronski & Parry	A dog hone specimen subjected to longitudinal compression and hydrostatic
1 /	I THOMSKI CO I ULLY	The add some speemen subjected to rongitudinal compression and invaluation

128 Wronski & Parry (1982 & 1985) Author performed compression and tensile test on paltered bars superimposed with hydrostatic stress, the failure in specimen is observed due to kinking. 129 Wronski & Parry (1982) Compressive mode of failure observed where kinking and buckling of fibers are ahead the kink surface. The effect of excess tensile loading can view in terms of matrix transverse cracking and deboning of fibers from matrix. The hydrostatic loading closes crack in matrix and limiting debonding. Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength. 130 Zocher (1995) Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of		(1982)	pressure lead to fail due to kinking which occurred slightly in the fiber direction.
(1982 & 1985) with hydrostatic stress, the failure in specimen is observed due to kinking. 129 Wronski & Parry (1982) Compressive mode of failure observed where kinking and buckling of fibers are ahead the kink surface. The effect of excess tensile loading can view in terms of matrix transverse cracking and deboning of fibers from matrix. The hydrostatic loading closes crack in matrix and limiting debonding. Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength. 130 Zocher (1995) Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of	128	Wronski & Parry	Author performed compression and tensile test on paltered bars superimposed
129 Wronski & Parry (1982) Compressive mode of failure observed where kinking and buckling of fibers are ahead the kink surface. The effect of excess tensile loading can view in terms of matrix transverse cracking and deboning of fibers from matrix. The hydrostatic loading closes crack in matrix and limiting debonding. Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength. 130 Zocher (1995) Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of		(1982 & 1985)	with hydrostatic stress, the failure in specimen is observed due to kinking.
(1982) ahead the kink surface. The effect of excess tensile loading can view in terms of matrix transverse cracking and deboning of fibers from matrix. The hydrostatic loading closes crack in matrix and limiting debonding. Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength. 130 Zocher (1995) Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of	129	Wronski & Parry	Compressive mode of failure observed where kinking and buckling of fibers are
matrix transverse cracking and deboning of fibers from matrix. The hydrostatic loading closes crack in matrix and limiting debonding. Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength. 130 Zocher (1995) Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of Toray 1000 pressure on unidirectional laminate made of the fiber specimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading.		(1982)	ahead the kink surface. The effect of excess tensile loading can view in terms of
Image: 1000 loading closes crack in matrix and limiting debonding.Image: 1000 loading closes crack in matrix and limiting debonding.Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength.130Zocher (1995)Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading.131Zinoviev&Author studied effect of hydro pressure on unidirectional laminate made of to hydro pressure on unidirectional laminate made of			matrix transverse cracking and deboning of fibers from matrix. The hydrostatic
Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength.130Zocher (1995)Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading.131Zinoviev&&Author studied effect of hydro pressure on unidirectional laminate made of Variant of the studied effect of hydro pressure on unidirectional laminate made of			loading closes crack in matrix and limiting debonding.
Hydrostatic failure shows greater failure impact on S2 glass fiber than carbon fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength.130Zocher (1995)Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading.131Zinoviev& Author studied effect of hydro pressure on unidirectional laminate made of to the total curve in the total curve.			
fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile strength. 130 Zocher (1995) Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of			Hydrostatic failure shows greater failure impact on S ₂ glass fiber than carbon
strength. Failure Theories 130 Zocher (1995) Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of			fiber specimen. Hydrostatic pressure exhibits inverse relationship with tensile
Failure Theories130Zocher (1995)Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading.131Zinoviev& Author studied effect of hydro pressure on unidirectional laminate made of Turvitue (1000)			strength.
130Zocher (1995)Author studied first ply failure for three dimensional loading on tubular specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading.131Zinoviev&Xuthor studied effect of hydro pressure on unidirectional laminate made of Weal. Classical and the pressure on unidirectional laminate made of			Failure Theories
 specimen made of Toray 1000/DER 332-T 403, loading combination considered was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of 	130	Zocher (1995)	Author studied first ply failure for three dimensional loading on tubular
 was axial tension, compression, torsion and internal pressure etc. author used Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. I31 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of Washington and the studied effect of hydro pressure on unidirectional laminate made of 			specimen made of Toray 1000/DER 332-T 403, loading combination considered
Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of laminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure on unidirectional laminate made of Much Studied effect of hydro pressure of hydro			was axial tension, compression, torsion and internal pressure etc. author used
Iaminas. The failure curves were plotted for 2D and 3D loading, it was observed that experimental results lie outside the failure envelope. Ultimate failure cannot be predicted neither for 2D or 3D loading.131Zinoviev& Author studied effect of hydro pressure on unidirectional laminate made of Wall of the failure fail			Tsai-Wu and Tsai-Hill criterion to study and evaluate behavior and failure of
131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of			laminas. The failure curves were plotted for 2D and 3D loading, it was observed
be predicted neither for 2D or 3D loading. 131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of			that experimental results lie outside the failure envelope. Ultimate failure cannot
131 Zinoviev & Author studied effect of hydro pressure on unidirectional laminate made of	101	7	be predicted neither for 2D or 3D loading.
1 I I I I I I I I I I I I I I I I I I I	131	Zinoviev &	Author studied effect of hydro pressure on unidirectional laminate made of
Tsvetkov (1998) Keviar fiber epoxy. The tubular specimen subjected to loading combination such		1 SVetkov (1998)	Keviar liber epoxy. The tubular specimen subjected to loading combination such
as uniaxial tension, compression and hydrostatic pressure. It was observed that,		9	as unlaxial tension, compression and hydrostatic pressure. It was observed that,
longitudinal tensile strength decreases with increase in pressure		8	longitudinal tensile strength decreases with increase in pressure
132 De Teresa (1990) Author studied effect of hydro pressure on compressive strength of IM7/8551-7	132	De Teresa (1999)	Author studied effect of hydro pressure on compressive strength of IM7/8551-7
(1)) Author studied effect of hydro pressure on compressive strength of hydrossi- carbon epoxy unidirectional composite Author further investigates effect	132	De Telesa (1999)	carbon enoxy unidirectional composite Author further investigates effect
pressure on longitudinal compressive strength		0 0	pressure on longitudinal compressive strength
		2-	
For investigation purpose author used rectangular specimen which respectively		2 -	For investigation purpose author used rectangular specimen which respectively
subjected to hydro pressure 345 & 172 MPa, the Tsai-Wu criterion was used to		N V	subjected to hydro pressure 345 & 172 MPa, the Tsai-Wu criterion was used to
study behavior of material. It was observed that transverse strength and			study behavior of material. It was observed that transverse strength and
longitudinal strength decreases with increase in pressure.		YY	longitudinal strength decreases with increase in pressure.
133 De Teresa (1999) Author investigates failure mechanics for laminate such as, [30/-30] _{12s} , [45/-	133	De Teresa (1999)	Author investigates failure mechanics for laminate such as, [30/-30] _{12s} , [45/-
$[45]_{12s}$ made of graphite epoxy (AS ₄ /3502) when subjected to hydrostatic failure.			$[45]_{12s}$ made of graphite epoxy (AS ₄ /3502) when subjected to hydrostatic failure.
Author used Mohr-Coulomb criterion to investigate matrix-fiber failure. It was			Author used Mohr-Coulomb criterion to investigate matrix-fiber failure. It was
observed that shear strength increases with increase in pressure.			observed that shear strength increases with increase in pressure.
134 Vgas & Pinho Author studied mechanical behavior of composites under hydro pressure & three	134	Vgas & Pinho	Author studied mechanical behavior of composites under hydro pressure & three
(2012) dimensional complex loading.		(2012)	dimensional complex loading.
Lamina strain energy failure criterion	105		Lamina strain energy failure criterion
135 Sandhu (1976) Author investigates and developed strain energy criterion to account non-linear	135	Sandhu (1976)	Author investigates and developed strain energy criterion to account non-linear
response of lamina. Author noted different failure mode of lamina under			response of lamina. Author noted different failure mode of lamina under
longitudinal, shear and transverse loading. Theory investigates failure which			longitudinal, shear and transverse loading. Theory investigates failure which
initiates from lamina and reached to laminate ultimately.	120	S = 11 + (1074)	initiates from lamina and reached to laminate ultimately.
Author developed analytical relationship between material properties of lamina and laminets ultimate strength. Laming properties obtained from streng strengt	130	Sananu (1974)	Author developed analytical relationship between material properties of lamina
and faminate utilinate strength. Lamina properties obtained from stress-strain			and familiate utilitate strength. Lamina properties obtained from stress-strain
direction			direction
Author applied strain energy criterion to all plies until ultimate laminate failure			Author applied strain energy criterion to all plies until ultimate laminate failure
Occurs.			occurs.
137 Sandhu (1974) Author finds tangent moduli from stress-strain curve drawn for uniaxial loading.	137	Sandhu (1974)	Author finds tangent moduli from stress-strain curve drawn for uniaxial loading.

		Compliance lamina properties are determined from tangent moduli's.
138	Sandhu (1976)	Author studied edge effect and non-uniform stress distribution on 15 degree off
		axis laminate for uniaxial longitudinal tension by using FEA and strain energy
		theory.
139	Sandhu (1976)	Author studied strain energy based failure model for angle ply laminates under
		uniaxial loading. Author also plotted stress strain curve for [45/-45] laminates
		for bi-axial loading.
140	Wolfe & Butalia	Author determined shape factor for unidirectional laminates under biaxial load
	(1998)	and multidirectional laminates for uniaxial or biaxial load.
141	Sandhu (1974)	Author finds strain energy ratio in longitudinal, transverse and shear direction.
142	Sandhu (1979)	Author proposed model technique for sudden unloading, gradual unloading and
		perfectly plastic behavior
		In sudden unloading, in the case of matrix failure, transverse and shear moduli
		reduced to small number and poisons ratio to 0. In the case of fiber failure,
		lamina unloaded in all the directions.
		Scientis:
		In gradual unloading failed lamina unloaded in small increments and laminate
		load increased beyond first ply failure.
	E E	
	B	In perfectly plastic behavior mode, failed lamina didn't unload as it didn't carry
1.42	W 1C 0 D 1	any additional load.
143	Wolfe & Butalia	Author observed that none of the strain component exceeds strain at ultimate
144	(1998) Walte & Dutalia	failure of the laminate under unlaxial loading.
144	(2002) Wolfe & Butalia	Author predicted shear strength of 1300/BSL 914C laminate for the loading
		strength of laminate where organizer had given 50 MPa
145	Wolfe & Butalia	Author investigates failure of E glass/I V556 laminate which was subjected to
145	(2002)	transverse and shear loading. The laminate configurations used were [90/30/-30]
		and subjected to longitudinal and transverse loading. The failure model
	N N	suggested by author over predicts the compressive strength in biaxial
	YY	compression because ply failed due to buckling at lower strength than matrix.
	V	
	Y	Author also investigates failure of unidirectional E-glass/LY 556 laminate of
		configuration [90/30/-30] _s subjected to biaxial longitudinal loading and shear,
		the failure of structure analyzed by using strain energy based model, the model
		states longitudinal strength of laminate more than experimental results, model is
		also not precisely capable to calculate ultimate longitudinal tensile strength.
		Author further investigates laminate, [55/-55] subjected to longitudinal and
		transverse loading but ultimate failure for said angle ply combination cannot be
		predicted accurately.
		England investigation lands without to conclude unidimentional E class/LV 750
		Further investigation leads author to conclude, undirectional E-glass/LY /50
		experimentally Experimental result predicts failure at 600 MPa and theory
		stresses are much lower in value
		In the investigation of E-glass/MY 750 laminate of configuration [45/-45].
		subjected to equal magnitude of longitudinal and transverse tensile loading
		(Transverse tension and axial compression), it was observed theory stress are
		less in value than experimental stress. Axial and transverse strains remain

	1	
		unpredicted.
		Author further investigates, Cross ply laminates subjected to uniaxial tension (Tubular coupon specimen) plots the stress-strain curve till failure, author leaded to conclusion, 90 degree laminas fail at low stress, where failure in 0 degree laminas at ultimate stress.
146	Chapra & Canale (2006)	Author draws piecewise cubic spline interpolation to formulate stress-strain curve between two data points. Author also states, uniaxial stress-strain response is different from multi axial stress-strain response. Hydrostatic load impacts on shear stress of lamina, and shear strength exhibits proportioned relationship with hydro pressure
147	Zand (2004, 2007)	Author predicts exact contribution of strain energy component in to matrix cracking and shear failure.
148	Pae (1996)	Author investigates impact of hydrostatic pressure on matrix; the tubular specimen made of material T 300/PR 314 subjected to uniaxial shear and hydro pressure used for test purpose.
149	Hine (2005)	Author studied impact of hydrostatic pressure on fiber; exponential degradation is function of strain accumulation from beginning. Exponential degradation decreases load carrying capacity of lamina and increases rate of load transferred to undamaged lamina. Nonlinearity in material behavior is greater in multidirectional laminate than unidirectional laminate; nonlinearity is function of matrix crack propagation in different direction.
		Multidirectional Laminates
150	Hine (2005)	Author investigates Tubular specimen [35/-35] lamina orientation, subjected to transverse compression and hydrostatic pressure, stress filed is not uniform through laminate thickness longitudinal, transvers and out of plane stresses are constant. Elastic moduli are changed according to fiber orientation. Failure strength found increasing with hydro pressure. The modulus and compressive strength also found increase with pressure. The laminate material used was E-glass/MY.
151	Hinton & Kaddour (2005)	Filament wound tubes with ply orientation [35/-35], longitudinal shear failure occurs through thickness.
152	Connor (1999)	Cross ply laminate, [0/90] _s , made of material E-glass/epoxy, subjected to uniaxial tension and behavior was studied in terms of stress-strain curve. Stress filed is not uniform over all laminas.
153	Pipes & Pagano (1970)	Author concludes, stress concentration exists near free edge of angle ply laminates so the maximum stress also is.
154	Pipes & Pagano	Stress concentration at lower load prevalent through laminate thickness before

Conclusion

- ➤ Yield occurs at 45 degrees
- Lamina is transversely isotropic
- Distortion energy is difference between strain energy and volumetric strain energy which leading material failure.
- Composite failure recognized as, fiber failure, matrix yielding, failure at fiber-matrix interface
- Progressive failure of composite is function of maximum strain load carried by ply.
- Hydrostatic pressure exhibits proportioned relationship with longitudinal compressive strength, transverse tensile strength, and, held inverse relationship with longitudinal tensile strength.
- Increase in hydrostatic pressure leading composite lamina failure by kinking.
- Highest hydrostatic pressure also results in delamination, crack opening and axial splitting.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

- Composite structure failure is combination of fiber buckling, delamination crack opening split and crack opening by ply separation.
- > Longitudinal modulus is pressure independent, where, longitudinal tensile strength is dependent.
- \geq Shear modulus, shear strength and yield strength are pressure independent.
- > Strain energy induced in transvers and longitudinal directions are separate term.
- Longitudinal tensile modulus increases \geq with increase in hydro pressure.
- Stress concentration at free edge plies results in \geq high pressure and further leads to ply delamination.
- Theoretical strength of lamina found more than \geq one predicted experimentally.

••••

•

- Exponential degradation of fiber is function of \geq strain accumulation from beginning.
- \geq Stress filed through laminate thickness is not uniform.

References

- 1. Peter Amaya, 2012, 'Progressive damage and failure model for composite laminates under multi axial loading conditions', MS Thesis, Ohio State University.
- 2. Madhujit Mukhopadhaya, 2005, 'Mechanics of Composite Material & Structure', Text book, ISBN 9788173714771

Valery V Vasiliev & Evgeny V Morozov, 2001, 3. 'Mechanics & Analysis of Composite Materials', text book, ISBN 0-08-042702-2.

International Journal of Trend in Scientific Research and Development