The Differential Transform Method for \((n+1)\)-dimensional Equal Width Wave equation with damping term

T. Siva Subramania Raja\(^1\), K. Sathya\(^2\), R. Asokan\(^3\), M. Janani\(^4\)

\(^1\)PG & Research Department of Mathematics, National College, Trichirapalli, Tamil Nadu, India
\(^2\)Department of Mathematics, Amman College of Arts and Science, Dindigul, Tamil Nadu, India
\(^3\)School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India
\(^4\)Department of Mathematics, Mary Matha Arts and Science College, Periyakulam, Tamil Nadu, India

ABSTRACT

We have employed the differential transform method to solve the \((n + 1)\)-dimensional Equal Width wave equations with damping term as.

Keywords: Differential Equation Method (DTM), DTM for Equal Width wave equations with damping term

1. INTRODUCTION

Zhou\(^2\) was the first one to use the differential transform method (DTM) in engineering applications. He employed DTM in solution of the initial boundary value problems in electric circuit analysis. In recent years concept of DTM has broad end to problems involving partial differential equations and systems of differential equations\([3-5]\). Some researchers have lately applied DTM for analysis of uniform and non-uniform beams [6-10]. In the few decades, the traditional integral transform methods such as Fourier and Laplace has equations into the algebraic equations which are easier to deal with.

The well known Korteweg and de Vries (KdV) equation \(u_t + uu_x + u_{xxx} = 0\) dimension. Morrison et al.\([1]\) proposed the one dimensional PDE \(u_t + uu_x + u_{xxx} = 0\), as an equally valid and accurate method for the same wave phenomena simulated by the KdV equation. This PDE is called the equal width wave equation because the solutions for the solitary waves with a permanent form and speed, for given value of the parameter, are waves with an equal width or wavelength for all wave amplitudes. In this chapter, we have employed the differential transform method to solve the \((n+1)\)-dimensional Equal Width wave equation with damping term as,

\[u_t = v_1 u_{x_1 x_1 t} + v_2 u_{x_2 x_2 t} + \ldots + v_n u_{x_n x_n t} + \gamma uu_{x_1} + \beta u \]

under the initial condition

\[u(x_1, x_2, \ldots, x_n, 0) = u_0(x_1, x_2, \ldots, x_n) \]

Where \(v_i's \ i = 1, 2, \ldots, n \), \(\gamma\) and \(\beta\) are constants.
2. Differential Transform method (DTM)

In this section, we give some basic definitions of the differential transformation. Let D denote the differential transform operator and D^{-1} the inverse differential transform operator.

2.1 Basic Definition of DTM

Definition 1

If $u(x_1; x_2; \ldots; x_n; t)$ is analytic in the domain then its $(n+1)$-dimensional differential transform is given by

$$U(k_1, k_2, \ldots, k_n, k_{n+1}) = \left(\frac{1}{k_1!, k_2!, \ldots, k_n!, k_{n+1}!} \right) \times$$

$$\frac{\partial^{k_1+k_2+\ldots+k_n+k_{n+1}} u(x_1, x_2, \ldots, x_n, t)}{\partial x_1^{k_1} \partial x_2^{k_2} \ldots \partial x_n^{k_n} \partial t^{k_{n+1}}} \bigg|_{x_1 = 0, x_2 = 0, \ldots, x_n = 0, t = 0}$$

where

$$u(x_1, x_2, \ldots, x_n, t) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \ldots \sum_{k_n=0}^{\infty} \sum_{k_{n+1}=0}^{\infty} U(k_1, k_2, \ldots, k_n, k_{n+1}) x_1^{k_1} x_2^{k_2} \ldots x_n^{k_n} t^{k_{n+1}}$$

$$= D^{-1}[U(k_1, k_2, \ldots, k_n, k_{n+1})]$$

Definition 2

If $U(x_1, x_2, \ldots, x_n, t) = D^{-1}[U(k_1, k_2, \ldots, k_n, k_{n+1})], v(x_1, x_2, \ldots, x_n, t)$

$$= D^{-1}[V(k_1, k_2, \ldots, k_n, k_{n+1})]$$

and \otimes denotes convolution, then the fundamental operations of the differential transform are expressed as follows:

(a). $D [U(x_1, x_2, \ldots, x_n, t)] v(x_1, x_2, \ldots, x_n, t) = U(k_1, k_2, \ldots, k_n, k_{n+1}) \otimes V(k_1, k_2, \ldots, k_n, k_{n+1})$

$$= \sum_{a_1=0}^{k_1} \sum_{a_2=0}^{k_2} \ldots \sum_{a_n=0}^{k_n} \sum_{a_{n+1}=0}^{k_{n+1}} U(a_1, a_2, \ldots, k_{n+1} - a_{n+1})$$

$$V(k_1 - a_1, a_2, \ldots, a_{n+1})$$

(b). $D [\alpha u(x_1, x_2, \ldots, x_n, t)] \pm \beta v(x_1, x_2, \ldots, x_n, t) = \alpha U(k_1, k_2, \ldots, k_n, k_{n+1})$

$$\pm \beta V(k_1, k_2, \ldots, k_n, k_{n+1})$$.

3. Computational illustrations of \((n+1)\)-dimensional Equal width wave equation with damping term

Here we describe the method explained in the previous section, by the following examples to validate the efficiency of the DTM.

Example:1

Consider the \((n+1)\)-dimensional equal width wave equation with damping by assuming \(v_i\)'s and \(\gamma = \beta = 1\) as,

\[u_t = u_{x_1 x_1 t} + u_{x_2 x_2 t} + \ldots + u_{x_n x_n t} + u u_{x_1} + u \] \hspace{2cm} (8)

Subject to the initial condition

\[u (x_1, x_2, \ldots, x_n, 0) = u_0 (x_1, x_2, \ldots, x_n, t) = x_1 + x_2 + \ldots + x_n \] \hspace{2cm} (9)

3.1. DTM for equal wave equation with damping term

Taking the differential transform of eq.(8), we have

\[(k_{n+1} + 1)U(k_1, k_2, \ldots, k_n, k_{n+1} + 1) = (k_1 + 2)(k_1 + 1)(k_{n+1} + 1)U(k_1 + 2, k_2, k_3, \ldots, k_{n+1} + 1) + (k_2 + 2)(k_2 + 1)(k_{n+1} + 1)U(k_1, k_2 + 2, k_3, \ldots, k_{n+1} + 1) + \ldots \]

\[+ (k_n + 2)(k_n + 1)(k_{n+1} + 1)U(k_1, k_2, \ldots, (k_{n+2})k_{n+1} + 1) + \sum_{a_1=0}^{k_1} \sum_{a_2=0}^{k_2} \ldots \sum_{a_n=0}^{k_n} \sum_{a_{n+1}=0}^{k_{n+1}} (k_1 + 1 - a_1)(k_{n+1} - a_{n+1}) \]

\[U (k_1 + 1 - a_1, a_2, a_3, \ldots, a_n, k_{n+1} - a_{n+1}) \times U (a_1k_2 - a_2, k_3 - a_3, \ldots, k_n - a_n, a_{n+1}) \] \hspace{2cm} (10)

From the initial condition eq.(9), it can be seen that

\[u (x_1, x_2, \ldots, x_n, 0) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \ldots \sum_{k_n=0}^{\infty} U (k_1, k_2, \ldots, k_n, 0) x_1^{k_1} x_2^{k_2} \ldots x_n^{k_n} \] \hspace{2cm} (11)
\[= x_1 + x_2 + \ldots + x_n \]

\[U(k_1, k_2, \ldots, k_n, 0) = \begin{cases} 1 & \text{if } k_i = 1, k_j = 0, i \neq j \\ 0 & \text{otherwise} \end{cases} \quad (12) \]

Using eq. (12) into eq. (11) one can obtain the values of \(U(k_1, k_2, \ldots, k_n, k_{n+1}) \) as

\[U(k_1, k_2, \ldots, k_n, 1) = \begin{cases} 1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, \ldots, n \\ 0 & \text{otherwise} \end{cases} \quad (13) \]

\[U(k_1, k_2, \ldots, k_n, 2) = \begin{cases} 1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, \ldots, n \\ 0 & \text{otherwise} \end{cases} \quad (14) \]

\[U(k_1, k_2, \ldots, k_n, 3) = \begin{cases} 1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, \ldots, n \\ 0 & \text{otherwise} \end{cases} \quad (15) \]

\[U(k_1, k_2, \ldots, k_n, n) = \begin{cases} 1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, \ldots, n \\ 0 & \text{otherwise} \end{cases} \quad (16) \]

Then from eqn. (4) we have

\[U(x_1, x_2, \ldots, x_n, t) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \ldots \sum_{k_n=0}^{\infty} \sum_{k_{n+1}=0}^{\infty} U(k_1, k_2, \ldots, k_n, k_{n+1}) (x_1^{k_1} x_2^{k_2} \ldots x_n^{k_n} t^{k_{n+1}}) \quad (17) \]

\[= (x_1 + x_2 + \ldots + x_n)(1 + 2t + 3t^2 + \ldots). \]

Thus, the exact solution is given by

\[u(x_1, x_2, \ldots, x_n, t) = \frac{x_1 + x_2 + \ldots + x_n}{(1-t)^2}, \text{ provided that } 0 \leq t < 1 \quad (18) \]

Example 2

Consider the \((3+1) \)-dimensional equal width wave equation with damping as,

\[u_t = u_{xxt} + u_{yyt} + u_{zzt} + uu_x + u \quad (19) \]
Subject to the initial condition
\[u(x, y, z, 0) = u_0(x, y, z) = x + y + z \]
(20)

3.2. DTM for Equal Width Wave Equation with damping term

Talking the differential transform of eq.(19), we have
\[
(k_1 + 1)U(k_1, k_2, k_3, k_{4+1}) = (k_1 + 2)(k_1 + 1)(k_{4+1} + 1)U(k_1 + 2, k_2, k_3, k_{4+1}) \\
+ (k_2 + 2)(k_2 + 1)(k_{4+1})U(k_1, k_2 + 2, k_3, k_{4+1}) \\
+ (k_3 + 2)(k_3 + 1)(k_{4+1})U(k_1, k_2, k_{3+2}, (k_{4+1}) \right)
+ \sum_{a_1=0}^{k_1} \sum_{a_2=0}^{k_2} \sum_{a_3=0}^{k_3} \sum_{a_4=0}^{k_4} (k_1 + 1 - a_1)(k_4 - a_4). \\
U(k_1 + 1 - a_1, a_2, a_3, a_4, k_4 - a_4) \times U(a_1, k_2 - a_2, k_3 - a_3, a_4).
\]
(21)

From the initial condition eq.(20), it can be seen that
\[
u(x, y, z, t, 0) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{k_3=0}^{\infty} U(k_1, k_2, k_3, 0) \cdot x^{k_1} \cdot y^{k_2} \cdot z^{k_3}
\]
(22)

\[
u(x, y, z, 0) = x + y + z
\]

where
\[
U(k_1, k_2, k_3, 0) = \begin{cases}
1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, 3 \\
0 & \text{otherwise}
\end{cases}
\]
(23)

Using eq.(22) into eq.(21), one can obtain the values of \(U(k_1, k_2, k_3, k_4)\) as
\[
U(k_1, k_2, k_3, 1) = \begin{cases}
1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, 3 \\
0 & \text{otherwise}
\end{cases}
\]
(24)

\[
U(k_1, k_2, k_3, 2) = \begin{cases}
1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, 3 \\
0 & \text{otherwise}
\end{cases}
\]
(25)
Then from eqn.(4) we have

\[
U(k_1, k_2, k_3, 3) = \begin{cases}
1 & \text{if } k_i = 1, k_j = 0, i \neq j, i, j = 1, 2, 3 \\
0 & \text{otherwise}
\end{cases}
\]

(26)

Thus, the exact solution is given by

\[
u(x, y, z, t) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{k_3=0}^{\infty} \sum_{k_4=0}^{\infty} U(k_1, k_2, k_3, k_4) x^{k_1} y^{k_2} z^{k_3} t^{k_4}
\]

(27)

\[
= (x + y + z) \left(1 + 2t + 3t^2 + ...
ight)
\]

Thus, the exact solution is given by

\[
u(x, y, z, t) = \frac{(x + y + z)}{(1 - t)^2} \text{ provided that } 0 \leq t < 1
\]

(28)

Example: 3

Consider the (2+1)-dimensional Equal width wave equation with damping as,

\[
u_t = u_{xx}t + u_{yy}t + uu_x + u
\]

(29)

Subject to the initial condition

\[
u(x, y, 0) = u_0(x, y) = x + y
\]

(30)

3.3 DTM for Equal width Wave equation with damping term

Talking the differential transform of eqn.(29), we have

\[
(k_3 + 1)U(k_1, k_2, k_3 + 1) = (k_1 + 2)(k_1 + 1)(k_3 + 1)U(k_1 + 2, k_2, k_3 + 1)
\]

\[
+ (k_2 + 2)(k_2 + 1)(k_3 + 1)U(k_1, k_2 + 2, k_3 + 1)
\]

\[
\sum_{a_1=0}^{k_1} \sum_{a_2=0}^{k_2} \sum_{a_3=0}^{k_3} (k_1 + 1 - a_1)(k_3 - a_3)
\]

\[
.U(k_1 + 1 - a_1, a_2, k_3 - a_3) \cdot U(a_1, k_2, a_3).
\]

(31)
4. CONCLUSION

1. The differential transform method have been successfully applied for solving the (n+1)-dimensional equal width wave equation with damping term.

2. The solutions obtained by this method is an infinite power series for the appropriate initial condition, which can, in turn be expressed in a closed form, the exact solution.

3. The results reveal that this method is very effective, convenient and quite accurate mathematical tools for solving the (n+1)-dimensional equal width wave equation with damping term.

4. This method can be used without any need to complex computations except the simple and elementary operations are also promising technique for solving the other nonlinear problems.

REFERENCES

