Home > Computer Science > Data Miining > Volume-1 > Issue-5 > Seismic: A Self-Exciting Point Process Model for Predicting Tweet Popularity using Hashtags

Seismic: A Self-Exciting Point Process Model for Predicting Tweet Popularity using Hashtags

Call for Papers

Volume-4 | Issue-2

Last date : 25-Feb-2020

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

Processing Charges : 700/- INR Only OR 25 USD (for foreign users)

Paper Publish : Within 2-4 Days after submitting

Submit Paper Online

For Author

IJTSRD Publication

Research Area


Seismic: A Self-Exciting Point Process Model for Predicting Tweet Popularity using Hashtags


Karthick.D | Dr. G. Vadivu

https://doi.org/10.31142/ijtsrd2366



Karthick.D | Dr. G. Vadivu "Seismic: A Self-Exciting Point Process Model for Predicting Tweet Popularity using Hashtags" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-1 | Issue-5, August 2017, pp.796-802, URL: https://www.ijtsrd.com/papers/ijtsrd2366.pdf

In existing paper they had used a full month of Twitter data to evaluate SEISMIC .In which the original data set contains over 3.2 billion tweets and retweets on Twitter from Octobor 7 to November 7, 2011.Also they only kept tweets such that it has at least 50 retweets, the text of the tweet does not contain a pound sign # (hashtag), and the language of the original poster is English. There are 166,076 tweets satisfying these criteria in the end.So here we are going to propose the mining of tweets with a particular #hashtags and going to formulate the number of retweets in an efficient manner ,so that it will be more efficient in terms of organizing particular categories while mining the popularity of retweets.

Information diffusion; cascade prediction; self-exciting point process; contagion; social media.


IJTSRD2366
Volume-1 | Issue-5, August 2017
796-802
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin