Home > Computer Science > Artificial Intelligence > Volume-2 > Issue-4 > Topic Detection using Machine Learning

Topic Detection using Machine Learning

Call for Papers

Volume-3 | Issue-2

Last date : 25-Feb-2019

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

Processing Charges : 700/- INR Only OR 25 USD (for foreign users)

Paper Publish : Within 2-4 Days after submitting

Submit Paper Online

For Author

IJTSRD Publication

Research Area

News & Events


Topic Detection using Machine Learning

Mr. Ajmal Rasi | Dr. Rajasimha A Makram | Ms. Shilpa Das

Mr. Ajmal Rasi | Dr. Rajasimha A Makram | Ms. Shilpa Das "Topic Detection using Machine Learning" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-4 , June 2018, URL: http://www.ijtsrd.com/papers/ijtsrd14272.pdf

Various types of social media such as blogs, discussion forums and peer-to-peer networks present a wealth of information that can be very helpful. Given vast amount of data, one of the challenge has been to automatically identify the topic of the background chatter. Such emerging topics can be identified by the appearance of multiple posts on a unique subject matter, which is distinct from previous online discourse. We address the problem of identifying topics through the use of machine learning. I propose a topic detection method based on supervised machine learning model, where sentences are labelled, tokenized and the vectorised sentence is trained on densely connected neural network. Compared to conventional gradient descent optimization algorithm, Adam optimizer trains the data much faster and efficiently. Finally the model is tested on an Android App with live data from Google News.

Machine Learning, Supervised Learning, Neural Networks, Topic Detection, Natural Language Processing


Volume-2 | Issue-4 , June 2018

2456-6470

IJTSRD14272