Home > Chemistry > Environmental Chemistry > Volume-2 > Issue-5 > Biosorption of Copper (II) Ions by Eclipta Alba Leaf Powder from Aqueous Solutions

Biosorption of Copper (II) Ions by Eclipta Alba Leaf Powder from Aqueous Solutions

Call for Papers

Volume-8 | Advancing Multidisciplinary Research and Analysis - Exploring Innovations

Last date : 28-Mar-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Biosorption of Copper (II) Ions by Eclipta Alba Leaf Powder from Aqueous Solutions


B. Kavitha | R. Arunadevi

https://doi.org/10.31142/ijtsrd17156



B. Kavitha | R. Arunadevi "Biosorption of Copper (II) Ions by Eclipta Alba Leaf Powder from Aqueous Solutions" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-5, August 2018, pp.1775-1782, URL: https://www.ijtsrd.com/papers/ijtsrd17156.pdf

The removal of heavy metals from industrial wastewater is of great concern as heavy metals are non-biodegradable, toxic elements that cause serious health problems if disposed of in the surrounding environment. The present study, Karisalangkani (Eclipta Alba) leaves were used for the adsorption of heavy metals like copper (Cu (II)) ions. The bio sorbent was characterized using SEM and BET analysis. The bio sorption experiments are conducted through batch system. The operating parameters studied were initial metal ion concentration, adsorbent dosage, initial solution pH, contact time and effect of temperature Adsorption equilibrium is achieved in 30 min and the adsorption kinetics of Cu (II) is found to follow a pseudo-second-order kinetic model. Equilibrium data for Cu (II) adsorption are fitted well by Langmuir isotherm model. The maximum adsorption capacity for Cu (II) ions is estimated to be 9.2 mg/g at 25 °C. The experimental result shows that the materials have good potential to remove heavy metals from effluent and good potential as an alternate low cost adsorbent. Due to their outstanding adsorption capacities, Eclipta Alba is excellent sorbents for the removal of copper (II) ions.

Eclipta Alba, heavy metal, adsorption, pseudo first order kinetic.


IJTSRD17156
Volume-2 | Issue-5, August 2018
1775-1782
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin